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Abstract
The optimization of process parameters in modern blast furnace operations, where both control and access to large data sets with 
multiple variables and objectives is required, remains a challenging task. To handle such non-linear and noisy data sets, deep 
learning techniques have been used in recent times. In this study, an evolutionary deep neural network algorithm (EvoDN2) 
has been applied to derive a data driven model for a blast furnace. The optimal front generated from the deep neural network is 
compared against the optimal models developed from bi-objective genetic programming algorithm (BioGP) and evolutionary 
neural network (EvoNN). The optimization process is applied to all the training models by using a constraint based reference 
vector evolutionary algorithm (cRVEA).
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1. Introduction
In the last 20 years, the iron-making blast furnace in-
dustry has undergone remarkable changes including 
the modernization of technology, advanced operational 
strategies, and planning, design changes, modeling, and 
optimization etc. These technological innovations and 
recent modeling strategies bring challenges in multiple 
aspects like cost minimization, quality enhancement, 
productivity improvement, and process optimization 
etc. Controlling these specific aspects is quite difficult 
in such a  complex reactor (The white book..., 2012; 
Geerdes et al., 2015). Numerous groups have conducted 
research on blast furnaces by adopting innovative mod-
eling and optimization strategies to overcome the per-
tinent obstacles. In the initial phase, most blast furnace 
problems were tackled by analytical and mathematical 
modeling techniques (Fabian, 1958; Omori, 1987). 

Later on, the focus shifted towards comprehensive mod-
els like one dimensional, two dimensional, three-dimen-
sional steady-state and transient models, computational 
fluid dynamics, and discrete elemental methods (Ade-
ma, 2014; Decastro et al., 2002; Dong et al., 2006; Ha-
tano & Kurita, 1982; Kilpinen, 1988; Nath, 2002; Rist 
& Meysson, 1967; Zhou et al., 2005). These models 
are not efficient enough to tackle these problems, how-
ever, and findings are also not close to the operation-
al requirements. Again these comprehensive models 
were exemplified by data driven strategies (Gujarathi 
& Babu, 2016; Pettersson et al., 2007), where the results 
are very close to the operational values without consid-
ering the physics of the process, as well as thermody-
namics and transfer equations. Further, these techniques 
are enhanced by adding evolutionary strategies like neu-
ral networks, genetic programming, and support vectors 
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etc. (Agrawal et al., 2010; Giri et al., 2013; Helle et al., 
2006; Hodge et al., 2006; Mahanta & Chakraborti, 2018, 
2019; Mitra et al., 2016; Mondal et al., 2011; Pettersson 
et al. 2009). These strategies have been implemented in 
attempts to tackle a large number of blast furnace iron 
making problems. EvoNN and BioGP (Agrawal et al. 
2010; Giri et al., 2013) are two recently developed data 
driven evolutionary algorithms applied in this domain to 
tackle multiple conflicting objectives with a higher level 
of non-linearity. This strategy moves one step further 
by considering deep learning techniques to solve noisy 
data sets in a  blast furnace. This novel technique can 
handle a large amount of non-linear data with multiple 
numbers of variables and objectives. A  deep learning 
based neural network (EvoDN2) (Roy & Chakraborti, 
2020; Roy et al., 2020) consists of multiple hidden lay-
ers, and each layer having different numbers of nodes. 
This approach can capture individual pieces of infor-
mation with a higher degree of accuracy, and it might 
be utilized local features and predict a relation globally. 
The optimal training model generated from an evolu-
tionary deep neural network is more efficient than other 
evolutionary models. Here, a systematic comparison is 
carried out between the training models, and their per-
formance in tackling non-linear data in multi objective 
space is evaluated. The training models generated from 
these evolutionary processes are optimized using the 
many objective optimization algorithm stated as con-
straint-based reference vector evolutionary algorithm 
(cRVEA) (Cheng et al., 2016; Chugh et al., 2016, 2017; 
Mahanta & Chakraborti, 2020). The many objective 
problems in this domain require special attention as 
a larger number of conflicting objectives routinely oc-
cur in this domain. The cRVEA algorithm has played an 
important role in solving such multi-dimensional prob-
lems. To search Pareto solutions in a  hyperspace and 
carry out the visualization of results is quite easy by us-
ing a reference vector based search process. This strat-
egy is applied to resolve such complex multi objective 
optimization problems in a blast furnace and to evaluate 
results as per operational requirements. The main pur-
pose of the work is to simultaneously optimize a large 
number of objectives pertinent to blast furnaces starting 
from noisy information and to compare the performance 
of different training modules for that purpose.

2. Evolutionary procedures

EvoNN: In this strategy, a population of Artificial Neu-
ral Nets (ANN) (Agarwal et al., 2010) with a  flexible 
structure that evolves through a multi objective genetic 
algorithm is used to generate training models, where an 

optimal front is generated by considering the training er-
ror and the complexity of the networks. The complexity 
is determined from a number of hidden nodes and their 
weight distribution. The total network architecture is 
divided into input, hidden, and output layers. The evo-
lution takes place at the lower part of the architecture, 
where a predator prey genetic algorithm (PPGA) (Mah-
anta & Chakraborti, 2019) is used to optimize the neu-
ral nets, and in the upper part linear transfer function is 
used in the optimization process. The best-suited training 
model is developed by using corrected Akaike informa-
tion criteria (AICc) (Mahanta & Chakraborti, 2019).

BioGP: In the Bi-objective Genetic Programming 
algorithm (BioGP) binary trees obtained through a multi 
objective genetic algorithm are used to generate training 
models, where an optimal front is generated by consid-
ering the training error and the complexity of these GP 
trees (Giri et al., 2013). The maximum depth and the 
number of roots increase the complexity level of the GP 
tree. A predator prey genetic algorithm (PPGA) (Mahan-
ta & Chakraborti, 2019) is used to develop a number of 
GP trees and their assembly, and the final convergence 
is obtained through a Linear Least Square (LLSQ) al-
gorithm (Mahanta & Chakraborti, 2019). The least error 
training model is automatically selected from the num-
ber of training models available in the Pareto front.

EvoDN2: In the EvoDN2 algorithm, ANNs with 
multiple hidden layers and nodes evolve through a multi 
objective genetic algorithm are used to generate the train-
ing models (Roy & Chakraborti, 2020). Deep neural net-
works are preferred for larger data sets with multiple vari-
ables. Any small perturbation can easily be captured by 
the deep neural network. Therefore nonlinear and noisy 
data are handled with higher accuracy. A  family of the 
subnet design concept is applied, where each subnet takes 
as its input parameter at least once. The output of the sub-
nets is collected and mapped to the objective variable us-
ing LLSQ. EvoDN2 has a provision to change a number 
of subnets as well as a number of layers and nodes in the 
algorithm to handle complex data sets (Roy et al., 2020).

cRVEA: The constraint based reference vector 
evolutionary algorithm is used in the optimization pro-
cess, where more than three mutually conflicting objec-
tives are optimized simultaneously (Cheng et al., 2016; 
Chugh et al., 2017). A reference based evolutionary strat-
egy is used in the evolution process to generate solutions 
in multi-dimensional hyperspace. The important steps 
which are followed during the optimization process are 
the generation of reference vectors in the objective space 
by using canonical simplex lattice design, assignment of 
an individual to reference vector by considering the low-
est angle between the individual and the corresponding 
reference vector, the selection of the individual is pro-
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cessed by angle penalized distance and the adaption of 
the reference vector as per the functional requirement 
and uniform distribution of candidate solutions in the 
objective space (Chugh et al., 2016).

3. Data preparation

The operational condition and process parameters were 
recorded every day in an operational blast furnace. 
A one year record chart was generated by taking all the 
production data during working time. Various param-
eters about the blast furnace were collected regarding 
input materials, charging, and processes. The data sheet 
contains one-year operational data, which are non-lin-
ear and noisy in nature due to the complex conditions 
of the reactor during the operation. In this data set, the 
information regarding raw materials, blast components, 
and hot metal components came out of direct measure-
ments, sensing reflection, and also from computing pro-
cesses. The operational information consists of twelve 
variables and eight objectives. The input variables 
which are used in this reactor are iron ore, manganese, 

quantities of limestone and dolomite, specific flux con-
sumption, LD slag, quartz, silicon oxide, calcium ox-
ide, and alkali and alumina additives. The operational 
parameters are directly or indirectly influenced by these 
variables during the operation. The output parameters 
which depend upon these variables are known as ob-
jectives of the process. Our choice of input and output 
variables was restricted by the availability of industrial 
data and the inputs from the industrial decision-maker. 
The considered objectives are total flow of gas inside 
the blast furnace, flow velocity inside the furnace, loss 
of heat from the furnace, tuyere cooling heat loss, pro-
ductivity, coke rate, plate cooling heat loss, and the rate 
of carbon flow through the shaft. The propriety items 
used here are reported in a  dimensionless manner to 
protect propriety information. These objectives are of 
immense practical importance. For example, produc-
tivity defines furnace capacity, the optimized coke rate 
improves the furnace efficiency, which in turn reduces 
fuel loss and results in better utilization of the reducing 
gas. Similarly, the minimization of the heat loss terms 
renders the furnace energy efficient. The range of input 
variables and the outputs are shown in Tables 1 and 2. 

Table 1. Range of input parameters in blast furnace 

Input parameters Remarks Maximum amount Minimum amount
Quantity of pellet used (X1) [%] measured parameter 25.34 7.70
Specific flux consumption (X2) [kg/thm] measured from charging 161.33 26.79
Quantity of limestone (X3) [kg/thm]

measured parameter

32.73 0.00
Dolomite (X4) [kg/thm] 24.93 0.00
LD slag (X5) [kg/thm] 45.76 0.00
Quartz (X6) [kg/thm] 97.61 14.00
Mn (X7) [%] required alloying element 0.62 0.04
Alkali additives (X8) [kg/thm]

measured parameter
5.14 0.08

Alumina additives (X9) [kg/thm] 3.85 0.17
FeO ore (X10) [%] 8.79 0.55
SiO2 (X11) [%] required for slag formation 6.75 1.21
CaO (X12) [%] reaction agent 0.44 0.04

Table 2. Range of output parameters in blast furnace

Output parameters Remarks Maximum 
amount 

Minimum 
amount

Tuyere cooling heat loss (Y1) [GJ/hr] measured value estimated from the tuyere 
cooling water flow and temperature 38.51 18.41

Total BF gas flow (Y2) [Nm3/hr] calculates from blast parameters calculated 
from blast 279588.59 177788.73

Tuyere velocity (Y3) [m/s] estimated from blast volume, pressure  
and temperature 222.87 130.64

Heat loss (Y4) [GJ/hr] measured from sensors 107.40 55.82
Corrected productivity (Y5) [t/m3/day] measured as output 2.91 1.99
Coke rate (Y6) [kg/thm] calculated from charging 555.01 412.52
Plate cooling heat loss (Y7) [GJ/hr]

measured
529.22 77.2

Carbon rate (Y8) [kg/thm] 540.35 437.29
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4. Metamodel generation

The above input and output variables are used in the 
evolution process by means of evolutionary data driven 
strategies like EvoNN, BioGP, and EvoDN2. The surro-
gate models generated by running actual operational data 
are quite significant in this research work. The objectives 
are separately trained with prescribed number generations 
where neural net, genetic programming, and the deep neu-
ral net play an important role in developing such surrogate 
models. The primary focus of this study has been to apply 
the EvoDN2 algorithm to mimic the blast furnace reac-
tor and study how the results fare against existing EvoNN 
and BioGP. The use of the trained models to optimize the 
objectives by using cRVEA will be demonstrated as well, 
followed by a detailed analysis of the findings.

5. Formulation of  
many objective optimization

Many objective optimization problems have been used 
to tackle multiple objectives at a  time. In this work, 
eight objectives are considered to have mutual conflicts 
with each other. The output process parameters are pre-
sented in Table 3 according to their functional require-
ments. The primary intention of this work is to control 
the parameters in an efficient way to find out the best 
possible results which directly affect the system and 
improve the operational condition. The performance of 
the plant depends upon the production of hot metal per 
day from tons of input material is known as the pro-
ductivity of the blast furnace, which should be maxi-
mized. To make the process cost effective, it requires coke 
rate minimization as the coke rate directly affects the cost 
of the operation. It also needs to reduce the carbon rate 
during a reaction to generate a lesser amount of CO and 
CO2 at the outer part of the furnace to avoid pollution. For 
the proper functioning of the blast furnace, the reduction 
process and the melting rate of the metal are analyzed by 
the minimization of heat loss from the furnace and tuyere 

cooling heat loss to maintain the optimum temperature in 
the blast furnace’s operations. The optimization process 
is also focused on the maximization of total blast furnace 
gas flow and tuyere velocity at the cohesive zone to pro-
vide a better chemical reaction and reduction process to 
maintain the optimum temperature inside the blast fur-
nace. These are the eight objectives that are considered 
and formulated according to the operational requirements.

Table 3. Formulation of objectives for the blast furnace
Objectives Task

Carbon rate minimize
Tuyere velocity  maximize
Coke rate  minimize
Heat loss minimize
Productivity maximize
Plate cooling heat loss minimize
Total BF gas flow maximize 
Tuyere cooling heat loss minimize

6. Results and discussion

The daily data collected from an operational blast fur-
nace are applied in the data driven modeling and many 
objective optimization work. cRVEA is applied in this 
many objective problem to find out the optimum solu-
tions. Training models are required in the many objec-
tive optimization process to find Pareto solutions in 
multi-dimensional hyperspace. The trained data gener-
ated from evolutionary data driven models like EvoNN, 
BioGP, and EvoDN2 are significantly important because 
the models are chosen according to the optimal tradeoff 
between the accuracy and complexity of the model. 
The minimum and maximum errors which are generat-
ed from these training models are shown in Table 4. In 
EvoNN and EvoDN2 the training model is selected from 
the Pareto tradeoff by using the corrected Akaike Criteri-
on (AICc) while in BioGP the least error model belong-
ing to the optimal tradeoff curve is considered.

Table 4. Training error evaluated from the data driven model

Objectives
Data driven models training error [%]

EvoNN BioGP EvoDN2
maxm error minm error maxm error minm error maxm error minm error 

Tuyere cooling heat loss (Y1) 24 12 16 14  18  12
Total BF gas flow (Y2) 14 09 12 11  15  08
Tuyere velocity (Y3) 12 07 10 07  14  08
Heat loss (Y4) 25 11 13 11  18  12
Productivity (Y5) 17 10 13 11  15  09
Coke rate (Y6) 15 06 12 08  16  08
Plate cooling heat loss (Y7) 26 14 15 14  21  11
Carbon rate (Y8) 13 07 12 09  14  08
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The algorithms used here combine training and test-
ing by creating models using some overlapping partitions 
in the data set (Mondal et al., 2011). The models are tested 
on each other, and the best performing model is selected. 
In this case, the ‘Total data’ was split into three overlap-
ping partitions, ‘Partition 1’, ‘Partition 2’ and ‘Partition 3’.  
The respective models generated using these subsets of 
‘Total data’ are denoted as ‘Model 1’, ‘Model 2’ and ‘Mod-
el 3’; while the ‘Model’ is created using the ‘Total data’.

The test results for all the eight objectives 
through EvoNN are presented in Table 5. The high-
lighted diagonal entries denote the original train-
ing errors of these models when they are trained 
using their assigned data sets, and the rest denote 
the errors recorded while they are tested on each  
other.

This procedure allows testing to continue even 
when there is a paucity of available data.

Table 5. Error table for the testing of models in EvoNN

Partition 1 Partition 2 Partition 3 Total data
Tuyere cooling heat loss (Y1)

Model 1 0.0119 0.5073 0.3895 0.369
Model 2 1.2002 0.0155 0.4516 0.7463
Model 3 0.5377 0.1651 0.0352 0.323
Model 0.1261 0.1177 0.0995 0.1126

Total BF gas flow (Y2)
Model 1 0.0347 0.3091 0.6323 0.4119
Model 2 0.6854 0.0485 0.6676 0.5588
Model 3 0.4729 0.415 0.0389 0.3664
Model 0.054 0.0953 0.0898 0.0812

Tuyere velocity (Y3)
Model 1 0.0288 0.1736 0.1364 0.1298
Model 2 0.4576 0.0273 0.7504 0.5139
Model 3 0.181 0.5704 0.0335 0.2535
Model 0.0608 0.0647 0.0711 0.0654

Heat loss (Y4)
Model 1 0.0458 0.4816 1.3091 0.8164
Model 2 1.7141 0.0562 2.4674 1.7555
Model 3 0.2771 0.142 0.0773 0.1859
Model 0.0783 0.1318 0.1016 0.1055

Productivity (Y5)
Model 1 0.0001 0.0002 0.0004 0.0003
Model 2 7.9984 0 2.9271 4.9565
Model 3 0.0006 0.0003 0.0001 0.0004
Model 0.0001 0.0001 0.0001 0.0001

Coke rate (Y6)
Model 1 0.0432 0.0973 0.1808 0.1217
Model 2 0.2232 0.0382 0.4983 0.3199
Model 3 72.088 0.6069 0.0374 41.917
Model 0.0804 0.0773 0.0888 0.0822

Plate cooling heat loss (Y7)
Model 1 0.0605 0.3738 0.3412 0.2965
Model 2 1.6773 0.058 7.2317 4.3455
Model 3 0.3887 0.1885 0.0718 0.2527
Model 0.1147 0.1219 0.1186 0.1181

Carbon rate (Y8)
Model 1 0.036 0.088 0.1616 0.1085
Model 2 0.3658 0.0421 0.1986 0.2433
Model 3 0.5911 0.3788 0.0388 0.4086
Model 0.0805 0.0642 0.0741 0.0729
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The outcomes of training and the corresponding 
correlation coefficients are evaluated from the training 
results. The experimental data and trained data after 
computation show that neither underfitting nor overfit-
ting occurred in the metamodels. The correlation coef-
ficient directly indicates that slope of fitting between 
experimental and trained data, and it is more than 60% 
for all the objectives. In Table 6, the correlation co-
efficients which evolved from various algorithms are 
shown with respect to their individual objectives. 

Table 6. Correlation coefficient between experimental data 
and trained data

Objective BioGP EvoNN EvoDN2
Tuyere cooling heat loss 
(Y1) 0.715 0.789 0.758

Total BF gas flow (Y2) 0.561 0.580 0.634
Tuyere velocity (Y3) 0.612 0.713 0.661
Heat loss (Y4) 0.688 0.746 0.771
Productivity (Y5) 0.564 0.647 0.640
Coke rate (Y6) 0.528 0.695 0.647
Plate cooling heat loss 
(Y7) 0.733 0.780 0.817

Carbon rate (Y8) 0.541 0.696 0.667

The exercised output results evaluated from training 
models clearly indicate that the model generated data are 
well trained and the modeled value evaluated from the 
three algorithms are different with respect to their genetic 
configurations. In most of the objectives, EvoDN2 shows 

better results compared to EvoNN and BioGP. The over-
all performance of all the training models is significantly 
important for the optimization purpose. The fittings with 
correlation coefficients are shown in Figure 1.

Many objective optimization plays a  major role 
in evaluating the Pareto solutions from trained data of 
various algorithms like EvoNN, BioGP, and EvoDN2. 
Nature-inspired training models evolve through multi 
objective genetic algorithms are used in the optimiza-
tion process. Here eight objectives are considered at 
a time. A constraint based reference vector evolution-
ary algorithm is applied to process all the objectives in 
multi-dimensional hyperspace. It means reference vec-
tors are to be distributed uniformly in the objective hy-
perspace, and individuals are assigned to these objec-
tive vectors. The selection of individual and adaption 
processes is carried out to find out multiple numbers 
of solutions in multi-dimensional space. The optimized 
results computed from these training models consist 
of the optimal values of eight objectives and twelve 
variables. The evaluated multi-dimensional results are 
shown in Figures 2–4.

In this optimization work, all eight objectives 
were used in many objective optimization processes. If 
we properly examine the results from multi-dimension-
al figures, we realize that four dimensions are used to 
represent four objectives at a time in each figure. Like-
wise, three figures are used to present eight objectives 
in a systematic manner. Each point in the multi-dimen-
sional hyperspace is an optimal solution. 

Fig. 1. Fitting and correlation coefficient figures generated for Tuyere Cooling Heat Loss (Y1)
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Fig. 2. cRVEA optimization results obtained from BioGP training data: a) heat loss; b) coke rate; c) carbon rate

Fig. 3. cRVEA optimization results obtained from EvoNN training data: a) heat loss; b) coke rate; c) carbon rate

Fig. 4. cRVEA optimization results obtained from EvoDN2 training data: a) heat loss; b) coke rate; c) carbon rate

From multi-dimensional figures, we can visual-
ize the results, but it is difficult to determine and read 
the exact values that exist in the solution set. To prop-
er visualization and representation of all the solutions, 
a simple technique called parallel plotting is used (Li 
et al., 2017). In parallel plotting, the multi-dimension-
al space is represented in two dimensions, where each 
optimum solution with its objectives and variables are 
represented by equally spaced vertical axes, and the 

traces along the horizontal direction represent the can-
didate solutions. This is a very standard way of repre-
senting multi-objective optimum, where the solution is 
a  set rather than a  unique value. Here following one 
trace from end to end, we get one optimum solution. 
Thus, the exact candidate solution can be determined 
using this procedure without any difficulty. The two-di-
mensional parallel plotted results for this study are pro-
vided in Figures 5–7. 

a)	 b)	 c)

a)	 b)	 c)

a)	 b)	 c)

�
Fig. 5. Parallel plotting optimal solutions obtained from BioGP_cRVEA
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Fig. 6. Parallel plotting optimal solutions obtained from 
EvoNN_cRVEA

Fig. 7. Parallel plotting optimal solutions obtained from 
EvoDN2_cRVEA

In the optimization process, according to the 
formulation, the objectives are minimized as well as 
maximized in a many objective optimization process. 
The objectives which are set for minimization here 
are tuyere cooling heat loss (Y1), heat loss (Y4), coke 
rate (Y6), plate cooling heat loss (Y7), carbon rate 
(Y8), and objectives configured for maximization 
are total blast furnace gas flow (Y2), tuyere veloci-

ty  (Y3), productivity (Y5). Before optimization, the 
data sheet information confirms that the range of data 
for tuyere cooling heat loss exists between minimum 
value 18.41  GJ/hr to maximum value 38.52 GJ/hr, 
total blast furnace gas flow occurs between mini-
mum value 1.77 ∙ 105 Nm3/hr  to the maximum value 
2.79 ∙ 105 Nm3/hr, tuyere velocity falls between mini-
mum value 130.64 m/s to maximum value 222.87 m/s, 
heat loss occurs between minimum value 55.82 GJ/hr 
to maximum value 107.41 GJ/hr, productivity aris-
es between minimum value 1.99 t/m3/day to maxi-
mum value 2.92 t/m3/day, coke rate occurs between 
minimum value 412.52 kg/thm to maximum value  
555.02 kg/thm, plate cooling heat loss generates 
between minimum value 29.22 GJ/hr to maximum 
value 77.36 GJ/hr and carbon rate turn out between 
minimum value 437.29 kg/thm to maximum value 
540.36 kg/thm. Then many objective optimization 
processes was carried out to the above objectives. 
First, the cRVEA algorithm was applied to the mod-
els using BioGP training data. It was found that op-
timal solutions are generated between the operation-
al limits. The computed optimized result shows that 
the range of solutions for tuyere cooling heat loss 
exists between minimum value 22.21 GJ/hr to max-
imum value 26.64 GJ/hr, total blast furnace gas flow 
occurs between minimum value 2.65 ∙ 105 Nm3/hr 
to the maximum value 2.89 ∙ 105 Nm3/hr, tuyere ve-
locity falls between minimum value 205.04 m/s to 
maximum value 238.48 m/s, heat loss occurs be-
tween minimum value 52.51 GJ/hr to maximum value  
89.64 GJ/hr, productivity varies between minimum val-
ue 2.31 t/m3/day to the maximum value 3.26 t/m3/day, 
coke rate occurs between minimum value 426.69 kg/thm 
to maximum value 458.88 kg/thm, plate cooling heat 
loss generates between minimum value 22.91 GJ/hr 
to maximum value 60.50 GJ/hr and carbon rate turn 
out between minimum value 388.20 kg/thm to maxi-
mum value 460.27 kg/thm. The EvoNN training data 
were also optimized by using cRVEA. The optimum 
solution falls within the required limits of plant oper-
ation. The computed optimized result shows that the 
range of solutions for tuyere cooling heat loss exists 
between minimum value 17.79 GJ/hr to maximum 
value 25.83 GJ/hr, total blast furnace gas flow occurs 
between minimum value 2.60 ∙ 105 Nm3/hr to the max-
imum value 2.87 ∙ 105 Nm3/hr, tuyere velocity falls 
between minimum value 197.98 m/s to maximum 
value 232.36 m/s, heat loss occurs between minimum 
value 51.83 GJ/hr to maximum value 79.63 GJ/hr, pro-
ductivity arises between minimum value 2.34 t/m3/day 
to the maximum value 2.97 t/m3/day, coke rate occurs 
between minimum value 400.06 kg/thm to maximum 
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value 479.80 kg/thm, plate cooling heat loss generates 
between minimum value 15.53 GJ/hr to maximum 
value 58.35 GJ/hr and carbon rate turn out between 
minimum value 435.42 kg/thm to maximum value 
469.22 kg/thm. cRVEA was then applied to EvoDN2 
training data. The results were also generated well 
within the required limit. The evaluated results show 
that the range of solutions for tuyere cooling heat loss 
exists between minimum value 15.15 GJ/hr to max-
imum value 25.94 GJ/hr, total blast furnace gas flow 
occurs between minimum value 2.60 ∙ 105 Nm3/hr 
to the maximum value 3.07 ∙ 105 Nm3/hr, tuyere ve-
locity falls between minimum value 194.15 m/s to max-
imum value 234.54 m/s, heat loss occurs between mini-
mum value 74.15 GJ/hr to maximum value 81.78 GJ/hr, 
productivity arises between minimum value 2.33 t/m3/day 
to the maximum value 3.05 t/m3/day, coke rate occurs 
between minimum value 402.15 kg/thm to maximum 
value 457.79 kg/thm, plate cooling heat loss was ob-
tained between minimum value 15.80 GJ/hr to max-
imum value 59.23 GJ/hr and carbon rate turns out to 
be between minimum value 452.28 kg/thm to max-
imum value 480.30 kg/thm. Therefore, all the eval-
uated results from training models are individually 
well within the industrial data range. The results are 
computed as per the formulation of the objectives and 
fall within the operational range of the plant, which is 
one of the major requirements of this many objective 
optimization of the blast furnace process. The range 
of solutions computed from all the training models is 
shown in Table 7.

7. General trend analysis  
and decision making  

in many objective optimization

The parametric features associated with the Pareto optimal 
set are deeply studied and analyzed during this work. Each 
solution from the optimal set contains useful information 
regarding twelve variables and eight objectives. Until re-
cently, such many objective algorithms were not tractable 
through evolutionary algorithms. From multi-dimension-
al pictures and parallel plotting figures, it was observed 
that each optimal point occurs within the acceptable oper-
ational limit. In multi-dimensional hyperspace, the range 
of solutions varied from model to model, but according 
to objective formulation, each objective drifted towards 
a higher limit or lower limit as per definition. When these 
solutions compared against the experimental datasheet, 
it clearly indicates that all the converged solutions make 
certain the objectives satisfy the necessary conditions re-
quired for the plant operation. The optimal solutions, in-
cluding objectives and variables computed from different 
training models, are shown in Figures 8–10, where each 
variable and objectives are compared against the range 
in the datasheet. Figure 8 shows that the optimized range 
of all the eight objectives generated from different train-
ing models by using cRVEA algorithm and compared the 
same against that obtained from datasheet. Similarly in 
Figures 9 and 10 reflect the optimized ranges of all the 
twelve variables generated from different training models 
by using cRVEA and compared the same against the data-
sheet variable ranges.

Table 7. Results evaluated by using cRVEA algorithm

Objectives
Algorithm

data sheet BioGP_cRVEA EvoNN_cRVEA EvoDN2_cRVEA

Y1 [GJ/hr]
min. 18.41 22.21 17.79 15.15
max. 38.52 26.64 25.83 25.94

Y2 [Nm3/hr] ∙ 105
min. 1.77 2.65 2.60 2.60
max. 2.79 2.89 2.87 3.07

Y3 [m/s]
min. 130.64 205.04 197.98 194.15
max. 222.87 238.48 232.36 234.54

Y4 [GJ/hr]
min. 55.82 52.51 51.83 74.15
max. 107.41 89.64 79.63 81.78

Y5 [t/m3/day]
min. 1.99 2.31 2.34 2.33
max. 2.92 3.26 2.97 3.05

Y6 [Kg/thm]
min. 412.52 426.69 400.06 402.15
max. 555.02 458.88 479.80 457.79

Y7 [GJ/hr]
min. 29.22 22.91 15.53 15.80
max. 77.36 60.50 58.35 59.23

Y8 [Kg/thm]
min. 437.29 388.20 435.42 452.28
max. 540.36 460.27 469.22 480.30
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Fig. 8. Optimized solution ranges generated from training algorithms and compared against operational datasheet in objective space

Once the optimization process is completed, the im-
plementation of optimal solutions is an important task in 
the many objective optimization field. The proper use of 
these solutions depends upon the environment, process, 
and working condition to take decisive action during the 
operation. This solely depends upon the decision making 
process where the most suitable option is chosen out of 
a number of options available in the decision set. This is 
a very difficult task in the blast furnace iron making pro-
cess, as multiple numbers of variables and objectives are 
associated with one solution. A well trained operator or 
a decision maker can make a call by proper understanding 
the processes and utilized the alternatives smartly, so that 
plant performance and optimal condition can be achieved 
in a better way compared to the ongoing operations. Re-
cently, multi-dimensional pictures and two dimensional 
parallel plots turned out to be immensely helpful in the 
early decision making process in blast furnace operation.

Since analytical models in a blast furnace are cum-
bersome and often of limited use, data driven models are 
the most viable options for the modeling and optimiza-
tion of different features of this reactor. An evolutionary 
approach was used by Brännbacka and Saxén (2001) 
to study the blast furnace hearth and Mitra and Saxén 
(2014) optimize the charging sequence in this reactor. 
Gao et al. (2011b) have successfully applied a support 
vector strategy to study a blast furnace, and a fuzzy rule 
base was also added to it in another study (Gao et al., 
2013). Data driven modeling for this reactor was also 
conducted using both Volterra series (Gao et al., 2011a) 
and time discrete approaches (Saxén et al., 2012) beside 
the conventional neural nets (Jimenez et al., 2004) and 
subspace concepts were also brought in (Zhou et al., 
2016). Data driven approaches related to information 
technology were also found effective in a running plant 
(Spirin et al., 2016).
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Fig. 9. Optimized solution ranges generated from training algorithms and compared against operational datasheet in variable space

Fig. 10. Optimized solution ranges generated from training algorithms and compared against operational datasheet in variable space
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8. Conclusion  

In this article, data driven strategies have been dis-
cussed along with their implementation in the many 
objective optimization process in a blast furnace op-
eration. The evolutionary techniques like EvoNN, 
BioGP, and EvoDN2 were applied to generate train-
ing models with the best possible Pareto tradeoff 
between accuracy and complexity. cRVEA many 
objective optimization process was used to handle 
a  blast furnace problem with twelve variables and 
eight objectives. This technique evaluated the results 
in multi-dimensional hyperspace and generated the 
results as per the requirement and achieved within 
the acceptable ranges. Some significant results were 
achieved regarding all of the objectives by consid-
ering these intelligent techniques. This can be effec-
tively introduced in operational strategies and plan-
ning in blast furnace operation as computed optimal 
solution can be helpful in the improvement of plant 
performance. According to the requirements, a deci-
sion maker can take the necessary action by chang-

ing the input parameters so that optimum objectives 
can be achieved at the output. To construct a  meta 
model with twelve variables and eight objectives is 
a  complex job, but in our research process, we ef-
fectively handled all these parameters and computed 
the optimal solutions as per the requirements of the 
steel plant. Globally, steel demand is increasing day 
by day and to achieve the demand like quality en-
hancement, productivity improvement, process opti-
mization, and cost minimization etc. in blast furnace 
operation needs advanced optimization strategies 
like evolutionary techniques, where multiple objec-
tives can be handled simultaneously to achieve the 
required goal.
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