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Abstract 
 

The objective of the paper was increasing the efficiency of the material model identification. An attempt to deter-
mine the coefficients of the model on the basis of industrial data was made. It is suggested that substituting the FE simula-
tion of the process by a fast metamodel in the inverse analysis should make this analysis much faster. Continuous hot strip 
rolling process was selected as an object. Artificial neural network was used as a metamodel of this process and good re-
sults were obtained in testing the network. Possibility of application of the metamodel of the rolling process for identifica-
tion of the material model on the basis of measurements of loads during rolling process was the main objective of the pa-
per. The inverse problem was formulated. Due to the lack of the industrial data in a wide range of temperatures and strain 
rates, in the first approach the experimental data (forces in rolling) were generated by the FE model. The tests of the in-
verse analysis for the rolling process were performed and good results were obtained. It is shown in the paper that the ap-
plication of the metamodelling allows for making inverse analysis very fast and, in consequence, any optimization tech-
nique can be applied. It is also confirmed that the flow stress model can be identified for the data obtained directly from 
the industrial rolling process. Possibility of application of the metamodel to the on-line control of the rolling process is 
demonstrated as well. 
 
Key words: flow stress model, identification, metamodel, DP steel, hot strip rolling 

 
 
 

1. INTRODUCTION 

Identification of material models is still a chal-
lenge for researchers. Inhomogeneity of strains, 
stresses and temperatures in a majority of experi-
mental tests, which are performed to identify coeffi-
cients in material models, is the main reason of dif-
ficulties with interpretation of results of these tests. 
Inverse analysis is commonly used to overcome 
these difficulties. Application of this analysis to 
plastometric tests is well researched, eg. Forestier et 
al. (2002).  The authors of the present paper devel-
oped an algorithm and computer code (Szeliga et al., 
2006) for inverse calculations. 

The motivations for the present work are two-
fold. High computing costs of the inverse analysis is 
the first inspiration. Searching for the minimum of 
the objective function requires a large number of 
runs of the FE code. In consequence, the optimiza-
tion procedure is often simplified and only certain 
non-gradient techniques can be used. The costs of 
the plastometric tests are the second motivation. The 
tests for identification of rheological models for hot 
forming require advanced thermomechanical simula-
tor with a precise control of temperature during the 
test, eg. Gleeble simulator. Preparation of samples 
and performing the tests is expensive as well. The 
general objectives of the present work were formu-
lated with the above observations in mind. A sugges-
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tion was made that substituting the FE solution by 
a fast metamodel in the inverse analysis should 
make this analysis much more efficient. Primary 
tests of this approach gave promising results 
(Sztangret et al., 2011a). In the present paper, this 
approach was used more extensively. The fact that 
there often exists the necessity for determining the 
flow stress model without performing plastometric 
tests was inspiration for the second objective of the 
present work. The possibility of identification of the 
material model on the basis of measurements of 
loads during rolling was evaluated. The metamodel 
of the strip rolling process was developed and the 
inverse problem was formulated. In the first ap-
proach, the experimental data (forces during rolling) 
were generated by the model. The results obtained in 
Szeliga et al. (2011a) from the plastometric tests for 
the same steel are used for comparison. 

2. EXPERIMENT 

The material was the DP steel containing 
0.11%C, 1.45%Mn, 0.19%Si, 0.27%Cr, 0.04%Cu, 
0.042%Al, 0.013%Ti, 0.004%N. This steel has been 
widely investigated by the Authors as far as phase 
transformations after rolling were considered (Pie-
trzyk et al., 2009; Pietrzyk et al., 2010). 

 
2.1. Plastometric tests 

 
Plastometric tests for this steel were made on the 

Gleeble 3800 simulator in the Institute for Ferrous 
Metallurgy in Gliwice, Poland. Cylindrical samples 
measuring 1012 mm were compressed to the 
strain of 1 with strain rates 1, 10 and 50 s-1 and tem-
peratures 950, 1000, 1100, 1200 and 1230oC. Loads 
and temperatures were monitored during the tests. 
A selected example of the monitored results for 
loads is shown in figure 1.  

Measurements of the temperature, which are not 
presented here, show that this temperature varies 
during the tests. It increases first due to deformation 
heating. The control system turns off the electric 
power and temperature starts to drop. All these vari-
ations of the temperature, as well as the effect of 
friction, are considered when inverse analysis is 
applied to the interpretation of results of plastomet-
ric tests. 

 
2.2. Industrial rolling 

 
Measurements of loads during industrial hot 

strip rolling process were supposed to be the second 

experiment. The hot strip mill consisted of one re-
verse roughing mill and 6 continuous finishing 
stands was considered. Schematic illustration of the 
finishing train of this mill is shown in figure 2. The 
main parameters of the mill are: work roll diameter 
D = 780 mm (stands 1-4) and D = 700 mm (stands 
5,6), distance between stands d = 5 m. The model 
calculates rolling loads and temperatures  in all 
stands. Apart from this, finishing rolling temperature 
Tf and coiling temperature Tc are calculated. The 
latter two temperatures were not considered in the 
present work.  

 

a)   b)

 
Fig. 1. Selected example of the load measurements, tempera-
tures 1000oC (a) and 1230oC (b). 

Due to the lack of the access to the industrial da-
ta for the DP steel in a wide range of temperatures 
and strain rates, the experimental results for identifi-
cations purposes were generated by the model. The-
se results were used in the inverse analysis. The 
objective was validation and testing of the inverse 
algorithm based on the industrial rolling data. 
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Fig. 2. Schematic illustration of the considered finishing train of 
the hot strip mill.  

3. MODELS 

3.1. Flow stress model 
 
The flow stress equation proposed by Hansel and 

Spittel was used (Hansel & Spittel, 1979): 

    exp expn m
p A q BT       (1) 

where: p – flow stress,  - strain,   - strain rate, A, 
n, q, m and B - coefficients, which have to be deter-
mined using inverse analysis. 
 
3.2. Finite element model 

 
Finite element model was used to generate data 

for development of the metamodel of the hot strip 
mill. This model is based on the rigid-plastic ther-
mo-mechanical finite element solution proposed in 
Kobayashi et al. (1989). Detailed description of the 
algorithm and the program, which was used in this 
work, is given by Pietrzyk (2000). The solution as-
sumes that the material fulfills Huber-Mises yield 
criterion and associated Levy-Mises flow rule. The 
velocity field is calculated by searching for a mini-
mum of the power functional: 

   T
i i V s

V S

J dV dS      f v   (2) 

where i - effective stress, which is equal to the flow 
stress p, i  - effective strain rate, V - volume,  

S - contact surface, V  - volumetric strain rate,  is 
Lagrange multiplier, f is vector of boundary trac-
tions, vs - vector of slip velocities between the roll 
and the strip. 

In the flow theory of plasticity, strain rates are 
related to stresses by the Levy-Mises flow rule: 

 2
3

i

i




σ ε


 (3) 

where  is vector of stresses, ε  is vector of strain 
rates. 

The friction model suggested by Chen and Ko-
bayashi (Chen & Kobayashi 1978; Kobayashi et al., 

1989; Lenard et al., 1999) was used in the present 
work: 

 arctgp
v

c
  
  (4) 

where  - friction coefficient, v - relative slip 
velocity, c - constant, few orders smaller than an 
average slip velocity. The value of c = 10-3 was 
assumed in the present work 

The flow formulation, which is the basis of 
the mechanical model, is coupled with the finite 
element solution of the Fourier heat transfer 
equation: 

 
p

Tk T Q c
t

 
   


   (5) 

where: k - conductivity, Q - heat generation rate due 
to deformation work, cp - specific heat,  - density,  
T - temperature, t - time. 

The following boundary conditions were 
used in the thermal solution: 

  a
Tk q h T T
  

n
  (6) 

where: h - heat transfer coefficient, Ta - surrounding 
temperature or tool temperature, q - heat flux due to 
friction, n - unit vector normal to the surface. 

Discretization of the problem is performed in 
a typical finite element manner and simulations of 
hot rolling can be performed. The presented model 
allows for determining the temperature distribution 
in the strip, accounting for the deformation heating, 
heating due to friction and heat transfer to the rolls 
and to the surrounding atmosphere. Mechanical pa-
rameters, including stresses, strains, loads and tor-
ques, were calculated by the FE model as well. 

A proper definition of the boundary conditions is 
crucial for the accuracy of the model. The boundary 
conditions included friction coefficient of 0.25 in the 
mechanical part and the heat transfer coefficient of 
50 kW/m2K (Lenard et al., 1999) for the contact 
with rolls in the thermal part. Typical convection-
radiation equation was used for cooling in the air.  

Six stand continuous hot strip rolling mill was 
selected as an example in the present work. 

 
3.3. Inverse algorithm 

 
Details of the inverse algorithm developed by 

the Authors are given in Szeliga et al. (2006) and are 
not repeated here. Briefly, the coefficients in the 
flow stress equation (1) are determined by searching 
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for a minimum of the objective function defined as 
Euclid norm between measured and predicted loads 
in the rolling process: 

 
2

1 1

( , )1 1Npt Nps
cji i mji

i j mji

F F
Npt Nps F 

          
 

x p   (7) 

where: Fmij, Fcij - measured and calculated loads, Nps 
– number of stands, Npt - number of tests,  
p - vector of process parameters (strain rates, tem-
peratures), x = {A, n, q, m, B} - vector of coeffi-
cients in the flow stress model. 

The direct problem model is based on the ther-
mal-mechanical finite element program described 
briefly in section 3.2, see Pietrzyk (2000), Lenard et 
al. (1999) for details.  

 
3.4. Metamodel 

 
As FE method is commonly used as a direct 

problem model, long computing times are necessary 
to determine the values of the objective function. 
Even if a simple FE model with stationary solution 
and coarse mesh is used in simulations of metal flow 
in rolling, the time necessary to calculate one pass is 
about 2-3 mins. Due to the tact that at least 54 passes 
have to be calculated to determine one value of the 
objective function in rolling, the decision was made 
to search for alternative models which could accel-
erate optimization. The application of the metamodel 
is such an alternative. According to Kusiak et al. 
(2009), metamodel of the considered process or 
phenomenon is a certain abstraction created on the 
basis of the lower level model developed using 
mathematical techniques. Thus, any approximation 
of the basic model, which gives reasonably realistic 
description of the process, can be considered a met-
amodel. Metamodel allows for significant decrease 
of the computing time.  

Various techniques can be used to build meta-
models. Artificial intelligence methods, in particular 
artificial neural networks, are the most commonly 
used. When the training data set is large enough, the 
artificial neural network is capable to describe even 
very complex relationships. The cost of computa-
tions for strip rolling is not so high, therefore, appli-
cation of the ANN is efficient. Contrary, when costs 
of computations of one set of data are high, other 
Metamodelling techniques should be searched. Ex-
amples of such situation are presented in Sztangret 
et al. (2011b), where response surface method was 
used in optimization of forging of crank shafts. 

Computing costs for that process are about 2 orders 
of magnitude higher comparing with flat rolling. 

The MLP (Multi Layer Perceptron) was used in 
the present work. This network is built from neurons 
located in layers. The first layer is called input layer, 
the last is called output layer, and all remaining are 
called hidden layers. A single neuron model is com-
posed of summation and activation blocks. Input 
signals, multiplied by corresponding weight parame-
ters are added together in first block and next trans-
formed by the activation function in the second one. 
Designing of the artificial neural network consists of 
the three steps: designing of the structure, training 
using the training data set and testing using the test-
ing data set. A detailed description of the neural 
networks can be found in Bishop (2006), Tade-
usiewicz (1993). 

Assuming certain standardization of the hot roll-
ing process, metamodel of that process based on the 
artificial neural network was developed. The follow-
ing input parameters were selected as variables:  
 Rolling conditions: entry temperature T, exit 

velocity v, entry strip thickness h0 and thickness 
after all passes h1 – h6. 

 Coefficients in equation (1).  
Training and testing data sets should be generat-

ed by the FE code (Pietrzyk, 2000; Lenard et al., 
1999). To decrease the computation costs, the two 
step approach to training the network was proposed. 
In the first step, the part of the rolling process model 
was considered. This was the relation between the 
average pressure in rolling and the flow stress of the 
rolled material. This model follows the idea of Sims 
(1954), who introduced coefficient Q representing 
average pressure-to-flow stress ratio (Q = pav/ap, 
where a = 2/ 3 , pav – average pressure, p – flow 
stress). The  = / ratio was introduced as an addi-
tional variable, where  is the shape factor defined 
as hav/ld, hav is an average thickness, ld is length of 
the arc of contact. Several FE simulations were 
made for various process parameters and it was 
found by Szeliga et al. (2011a) that the relationship 
between Q and  = / is linear for a wide range of 
strip thickness and reduction. In consequence, the 
following equation was obtained by approximation 
of results of the FE simulations: 

   
   

1 0.572p dF l w   (8) 

where: F – rolling force, w – width of the strip. 
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Thus, the approach based on equation (8) was 
used as the mechanical part of the rolling model. 
One dimensional finite element solution was used in 
calculations of temperatures. This approach was 
successfully applied in Szeliga et al. (2011b) to the 
laboratory pilot hot strip mill. The output parameters 
for this model were values of the rolling forces in all 
passes. This model was used in the present work to 
generate training and testing data for the ANN met-
amodel. 

 
3.5. Training of the metamodel 

 
The metamodel consists of six different artificial 

neural networks, each one used in prediction of 
loads at one stand. The typical MLP neural network 
was trained using the supervised learning methods, 
which requires an appropriately large training data 
set. Thus, the data set of 10 000 records was used to 
train the model. The data set was divided into two 
separated subsets dedicated to training (90%) and 
testing (10%). A root mean square error (RMS) was 
used as a measure of the accuracy of each network. 
Several tests were performed to adjust optimal to-
pologies of the networks used in metamodel. The 
topologies as well as errors and activation functions 
are presented in table 1.  

Table 1. Neural networks metamodels - RMS error values, 
topologies and activation functions. 

Stand 
no. 

RMS error 
[%] Topology 

Activation function 
(input layer – hidden layer) 

1 0.26 14-30-1 tansig – tansig 

2 0.46 14-28-1 tansig – logsig 

3 0.81 14-28-1 tansig – tansig 

4 0.46 14-15-1 logsig – logsig 

5 0.51 14-11-1 tansig – tansig 

6 1.31 14-22-1 logsig – logsig 

 

4. MODEL IDENTIFICATION AND 
VALIDATION 

4.1. conventional inverse analysis based on 
compression tests 

 
Conventional inverse analysis of plastometric 

tests with the FE code as direct problem model was 
performed first. The inverse algorithm described by 
Szeliga et al. (2006) was used. The results were ob-
tained in the form of a stress-strain relationship giv-

en in a tabular form (see figure 3) and as coefficients 
in equation (1), see table 2.  

a)   b)

  
Fig. 3. Selected plots of the flow stress as a function of strain 
determined using the inverse analysis of the plastometric tests. 

4.2. Inverse analysis based on hot strip rolling 
 
Schematic illustration of the inverse approach 

based on the metamodel of the finishing train of the 
hot strip mill is shown in figure 4. As it has been 
mentioned, it was not possible to collect the experi-
mental data for the industrial rolling mill in a wide 
range of temperatures and strain rates. Therefore, 
these data were generated by the developed model of 
the hot strip mill. Nine rolling schedules were simu-
lated, with initial temperatures 950oC, 1000oC and 
1050oC and with the velocities in the last stand 6, 8 
and 10 m/s. Rolling forces in 6 passes in the consid-
ered rolling schedule 40  19.2  12.8  9.5  
7.0  5.7  4.4 mm were used as the experimental 
data in the inverse analysis.  
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Fig. 4. Schematic illustration of the inverse analysis based on 
the metamodel of the finishing train of the hot strip mill. 

The objective function was defined by equation 
(7). The ANN metamodel was used as a direct prob-
lem model, see figure 4. In consequence, time of 
calculation of the objective function (7) decreased 
significantly and the application of an arbitrary op-
timization method was possible. The selection of the 
method depends on the character of the objective 
function and on the availability of additional infor-
mation about this function. Conventional gradient 
and non-gradient methods are not effective in the 
case of multimodal objective functions, which have 
several local minima. They are usually stacked in the 
first encountered local minimum. Apart from that, 
the gradient methods require calculation of the de-
rivatives of the objective function. Thus, non-
deterministic algorithms were applied in the present 
work. The bio-inspired methods (Kusiak et al., 
2009) were mostly considered. Although they do not 
guarantee finding the global minimum, they are 
robust to problems characteristic for the multimodal 
functions and they search for the minimum using 
values of the objective function, not derivatives. The 
following algorithms were used: Genetic Algorithms 
(GA), Evolutionary Algorithms (EA), Ant Colony 
Optimization (ACO), Particle Swarm Optimization 
(PSO), Artificial Immune System (AIS) and Simu-
lated Annealing (SA) methods. PSO method modi-
fied by the Authors was applied, as well. The pro-
posed modification is based on coupling it with the 
sensitivity analysis, which allows dynamic control of 
the particles swarm and better convergence of the 
method. 

Performed optimization yielded the values of 
coefficients in equation (1) given in the second row 
of table 2. The final (optimal) value of the objective 
function, which can be treated as the accuracy of the 
solution was  = 0.0868 for plastometric tests and 
 = 0.0115 for the inverse analysis of the rolling 

process. It should be emphasized again, however, 
that the experimental data for the rolling process 
were generated using coefficients obtained in the 
plastometric tests. 

Table 2. Coefficients of equation (1) obtained using inverse 
analysis of the plastometric tests and the rolling process. 

test A n q m B  

plastometric 3255.3 0.19 0.28335 0.119 3.006710-3 0.0868

rolling 3480.2 0.2033 0.2766 0.1142 3.051310-3 0.0115

 
The analysis of the results in table 2 shows that 

slight differences in the values of coefficients exist 
between those obtained from the plastometric tests 
and the rolling process. Therefore, comparison of the 
plots of function (1) with the two sets of coefficients 
in table 2 was made and the results are presented in 
figure 5. It can be seen that the shape of curves is 
similar.  

 
Fig. 5. Plots of the flow stress calculated from equation (1) with 
coefficients in table 2, obtained from plastometric tests (solid 
lines) and from rolling tests (dotted lines). 

Additional evaluation of the accuracy of the 
identification based on the hot strip rolling process 
was made by the comparison of rolling loads calcu-
lated using the metamodel with the flow stress equa-
tion (1) with the two sets of coefficients in table 2. 
The rolling schedules for the 6 stand finishing train 
given in table 3 were considered in these tests and 
the results of the comparison are presented in table 
4. The width of the strip was 1500 mm and the roll 
radius was 390 mm in the stands 1-4 and 350 mm in 
the last two stands. It is visible that a very good 
agreement between forces calculated for the two sets 
of coefficients in table 3 was obtained. It is also well 
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seen in figure 6, where distinction between the two 
sets of results is difficult. 

The results in figure 5 and in table 4 show that 
very good agreement between the results for the two 
sets of coefficients in equation (1) was obtained. It 
questions the uniqueness of the inverse solution, 
which is probably due to mathematical form of 
equation (1). This equation allows for obtaining 
similar results for various combinations of coeffi-
cients A, n and q responsible for the strain sensitivi-
ty, which is the reason of the lack of uniqueness of 
the solution. This problem needs a further investiga-
tion. 

Table 3. Rolling schedules considered in the numerical tests. 

Test 
no. 

T0 
oC 

v6 

m/s 
h0 

mm 
h1 

mm
h2 

mm 
h3 

mm 
h4 

mm 
h5 

mm
h6 

mm

1 1040 6.3 40 19.2 12.8 9.5 7 5.7 4.4

2 1025 6.8 40 19.2 12 9 7 5.7 4.4

3 980 7.1 40 19.2 13 10 7 5.5 4.4

4 960 8.5 40 19.2 13 9 6.8 5.8 4.4

5 1040 9.1 40 19.2 12.8 9.5 7.1 5.6 4.4

6 1025 9.9 40 19.2 12.2 9 6.9 5.6 4.4

7 980 9.5 40 19.2 12.8 10 6.8 5.5 4.4

8 960 6.5 40 19.2 12.6 9.5 6.8 5.8 4.4

 

Table 4. Rolling force (F) calculated using metamodel with the 
flow stress equation (1) with the sets of coefficients determined 
from the Gleeble tests (top) and from the rolling tests (bottom). 

Test 
no. 

F1 
MN 

F2 
MN 

F3 
MN 

F4 
MN 

F5 
MN 

F6 
MN 

1 
28.29 15.53 11.42 11.42 7.35 9.03 

28.43 15.47 11.33 11.31 7.25 8.91 

2 
29.89 18.38 11.37 9.87 7.6 9.3 

30.04 18.33 11.27 9.76 7.49 9.17 

3 
34.47 17.93 12.1 15.39 9.74 8.95 

34.71 17.89 12.02 15.28 9.62 8.82 

4 
37.45 19.23 17.15 12.84 7.04 11.42 

37.71 19.19 17.05 12.72 6.93 11.27 

5 
29.57 15.97 11.59 10.98 8.3 8.29 

29.66 15.88 11.48 10.85 8.18 8.15 

6 
31.27 18.39 12.18 10.43 7.65 8.57 

31.38 18.3 12.06 10.29 7.52 8.43 

7 
35.7 18.96 11.61 16.58 8.63 8.87 

35.9 18.9 11.51 16.44 8.5 8.73 

8 36.25 20.07 13.42 15.11 7.05 11.53 

36.55 20.05 13.34 15 6.96 11.4 

 
Fig. 6. Rolling force calculated using metamodel with the flow 
stress equation (1) with the sets of coefficients determined from 
the Gleeble tests (filled symbols) and from the rolling tests 
(dotted lines). 

4.3. Application to the on-line control 
 
The presented method of identification of the 

flow stress model on the basis of measurements of 
loads in the rolling process is an alternative for the 
plastometric tests. Capabilities of this method have 
been confirmed. Conducted analysis shows that this 
method has some advantages but also several disad-
vantages. The solution is very sensitive to errors in 
temperature calculations. One dimensional FE mod-
el, which was used in the present work, is accurate 
and reasonably fast, calculations of the whole pro-
cess take less than 20 s. However, this time is too 
long for the on-line control of the hot strip rolling 
process. A faster temperature model can be based on 
artificial neural network, which will be the subject of 
the future work.  

Problems with obtaining data for a wide range of 
temperatures and velocities are the next disad-
vantage of the presented approach, which has to be 
eliminated. The range of strain rates and tempera-
tures in the available industrial experimental data is 
too narrow. Temperatures in the considered hot strip 
rolling processes are within the range 1050-850oC, 
but they are not uniformly distributed in the temper-
ature-strain rate space of the data. Higher tempera-
tures are connected with low strain rates and vice 
versa. In consequence, there is a lack of the data for 
certain combinations of the temperature and the 
strain rate. Finally, due to reasonable low strains in 
the hot strip rolling, the effect of the dynamic recrys-
tallization on the flow stress is difficult to be evalu-
ated.  
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Possibility of fast identification of the model 
during production, without performing plastometric 
tests, is the main advantage of the presented ap-
proach. Apart from this, the approach can be used 
for adaptive updating of the flow stress model in the 
on-line control of the strip rolling process (Szeliga et 
al., 2011a). The application of the adaptive proce-
dure is an efficient method of improvement of the 
accuracy of the process control. The coefficients in 
the flow stress equation are corrected during the on-
line work, basing on the current measurements of the 
loads, see for example Svietlichnyj and Pietrzyk 
(1999). Such an adaptation can be based on the coef-
ficients determined using the inverse method, which 
is described above. In this approach, the parameters 
in equation (1) are substituted by their new values, 
using the digital filter rule: 

  , , 11av i av i i   x x x   (9) 

where: xav - current, average values of parameters 
{A, n, q, m, B}, x - values of these parameters calcu-
lated using inverse analysis for the recent measure-
ments, i - iteration number,  - inertia coefficient  
(0 <   <1). 

5. CONCLUSIONS 

Metamodel of the hot strip rolling process was 
developed. The tests of the inverse analysis with the 
metamodel for the hot strip rolling process were 
performed in the paper and very good results were 
obtained when experimental data were generated by 
the model. The following conclusions were drawn: 
 Identification of the flow stress model on the 

basis of the hot strip rolling data is possible, but, 
due to narrow range of temperatures and strain 
rates, the inverse analysis based on these data 
would be probably difficult.  

 The agreement between flow stresses and rolling 
forces calculated for the two sets of coefficients 
in the flow stress model was very good. One set 
was obtained from the Gleeble tests and the se-
cond from the rolling tests. It has to be remem-
bered that, due to the lack of the experimental 
data for strip rolling, this data was generated by 
the model. 

 Values of the coefficients responsible for the 
strain sensitivity in the flow stress equation were 
different in the two sets. It questions the unique-
ness of the inverse solution, which is due to the 
mathematical form of the flow stress equation 
proposed by Hansel and Spittel (1979). 

 Developed technique can be useful as an adap-
tive model in the on-line control of the hot strip 
rolling process. 
Summarizing this work, it was shown that appli-

cation of metamodelling and inverse analysis allows 
for fast identification of the coefficients in the flow 
stress equation on the basis of the data for the indus-
trial process. 
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IDENTYFIKACJA WŁASNOŚCI MATERIAŁOWYCH 
STALI DP W OPARCIU O PRÓBY 

PLASTOMETRYCZNE ORAZ WALCOWANIE BLACH 
NA GORĄCO 

Streszczenie 
 
Celem pracy była poprawa dokładności i skrócenie czasu 

identyfikacji parametrów modelu materiału. W pracy podjęta 
również została próba wyznaczenia współczynników modelu 
materiału w oparciu o dane przemysłowe. Zmodyfikowano 
algorytm obliczeń odwrotnych zastępując model MES znacznie 
szybszym metamodelem i redukując w ten sposób znacząco czas 
obliczeń. Jako proces przemysłowy wybrano walcowanie ciągłe 
blach na gorąco, natomiast metamodel został zbudowany 
w oparciu o sztuczne sieci neuronowe. Głównym celem pracy 
było sprawdzenie możliwości zastosowania metamodelu proce-
su walcowania do wyznaczania wartości sił występujących 
w tym procesie. Ze względu na brak pomiarów przemysłowych 
dla szerokiego zakresu zmian temperatury i prędkości walcowa-
nia, dane eksperymentalne zostały wygenerowane za pomocą 
modelu MES. Wyniki uzyskane z przeprowadzonej analizy 
odwrotnej procesu walcowania były bardzo zadawalające. Wy-
kazano, że zastosowanie metamodelu pozawala na znaczne 
skrócenie czasu obliczeń odwrotnych, przez co możliwe jest 
stosowanie dowolnych metod optymalizacji. Potwierdzono, że 
parametry modelu płynięcia materiału można identyfikować 
w oparciu a dane przemysłowe uzyskane wprost z procesu 
walcowania. Przedstawiono również możliwość zastosowania 
aplikacji opartych o metamodel w sterowaniu on-line. 
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