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Abstract 
 

The paper is devoted to multiscale identification of material properties in microscale. The identification process al-
lows one to identify properties (like material constants, geometry) in microscale on the basis of measurements performed 
for macroscale. The presented approach assumes stochastic material properties in microscale. The identification problem 
is formulated as minimization of a functional which represents a distance between measured and theoretical values of dis-
placements and strains. The Monte Carlo method combined with the finite element method is used to obtain theoretical 
displacements and strains values. The identification problem is solved with use of an evolutionary algorithm. 
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1. INTRODUCTION 

The paper is devoted to identification problems 
in multiscale modeling in stochastic conditions. The 
multiscale modeling is able to take into account 
materials or geometrical effects which occur in mi-
croscale and obtain more precise results in mac-
roscale analysis. The identification allows one to 
evaluate materials or geometrical parameters of 
a structure in microscale on the basis of statistical 
measurements in macroscale. The methodology pre-
sented in the paper takes into account stochastic 
nature of parameters in the microscale and the iden-
tification problem is formulated as minimization of 
a certain stochastic objective function. The problem 
is transformed into deterministic one in which a new 
objective functional dependent on mean values and 
variances is minimized with respect to moments of 
stochastic parameters. An approach based on evolu-
tionary computing is presented in the minimization 

problem. The main advantage of the presented ap-
proach consists in the fact that a gradient of the ob-
jective functional is no needed and moreover there is 
a great probability of finding the global minimum. 
The computational homogenization is used to mul-
tiscale modelling of the structures. The problem 
formulation, description of optimization algorithm 
and a numerical example are shown in the following 
chapters. 

2.  MULTISCALE STOCHASTIC 
MODELLING OF STRUCTURE 

The multiscale modelling incorporates two or 
more scales into analysis of a structure (Madej et al., 
2008). One of the numerical techniques which ena-
bles multiscale analysis of physical systems is 
a computational homogenization. The detailed de-
scription of the computational homogenization can 
be found in Terada and Kikuchi (2001). In the case 
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of structures with a local periodicity there are areas 
of the system with the same microstructure. The 
example of such a system is presented in figure 1. 
Microstructures can be also built from lower scale 
locally periodic microstructures. The goal of the 
computational homogenization is analysis of the 
system taking into account the local periodicity of 
microstructures. The main advantage of this ap-
proach is the fact that analysis in a few scales allows 
one to use models with at least a few orders of de-
grees of freedom lower than model created in one 
scale. 
 

 

Fig. 1. Two scale model of a material system with locally peri-
odical microstructures. 

The material parameters for each integration 
point in finite elements depend on the solution of a 
representative volume element (RVE) in the lower 
scale. In most cases it is modeled as a cube (3D) or a 
square (2D) and it can contain voids, cracks, inclu-
sions and other properties of microstructure. Compu-
tational methods like the Finite Element Method 
(FEM) (Zienkiewicz et al., 2005) or the Boundary 
Element Method (BEM) (Burczyński, 1995) are 
used to solve the boundary value problem for RVE. 
The periodic boundary displacement conditions are 
taken into account. The strains from the higher level 
are prescribed as additional boundary conditions. 
The RVE for each integration point of the higher 
level model must be created and stored for the next 
iteration steps if the nonlinear problem with plastici-
ty is considered. The transfer of information both 
form lower to higher and higher to lower scales is 
needed in most cases. The transfer of average strains 
and stresses between scales is shown in figure 2. 
 

 

Fig. 2. The average strain and stress transfer between scales. 

The one way transfer of results (from lower to 
higher scales) is possible if the linear problem is 
considered. The material parameters for the higher 
scale are obtained on the basis of solving a few di-
rect problems for the RVE in the lower scale. The 
homogenized material parameters depend on aver-
age stress values in the RVE obtained after applying 
average strains to the RVE. The stress-strain relation 
is used in the higher level model. The average 
strains are strains in the integration point from the 
higher level. 

Very often material and geometrical parameters 
of the structure in the microscale have uncertain 
nature. One of the most important model of uncer-
tainty used in identification problems is based on the 
theory of probability and stochastic processes (Bur-
czyński & Orantek, 2009). The multiscale analysis 
can be performed for structures with stochastic ma-
terial or geometry which occur in the RVE. 

Suppose that stochastic material and geometrical 
parameters of the RVE are described by random 
variables ( ), 1, 2,.., , ,iX i n    where Γ is the 
space of elementary events which represents all the 
possible simplest outcomes of a trial associated with 
the given random phenomenon. In the theoretical 
model of random phenomena the basic role is played 
by the probability space (Γ,F,P), where F is a σ -
algebra of subset of Γ. Elements of the F are called 
random events and P is a probability defined on F 
(Papoulis, 1991). A random variable 

( ), ,i iX X     defined on a sample space Γ 
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and measurable with respect to P, i.e. for every real 
number xi, the set  : ( )i iX x    is an event in F.  

A random vector  
 1 2( ) ( ), ( ),..., ( ),..., ( )i nX X X X    X  (1) 

is a function, measurable respect to P which takes 
every element    into a point nRx  and has an 
n-dimensional Gaussian distribution of the probabil-
ity density function given as follows: 

 (2)
 

0K is the determinant of the matrix covariances, 

, , 1, 2,..., ,ijk i j n   K where 

( )( ) ,ij i i j j ijk X m X m K    E is the co-factor 

of the element ijk the matrix K and  ( )i im X  E

is the mean value of ( ).iX   
E[·] indicates expectation or ensemble average. 

It is assumed that random parameters are inde-
pendent random variables. The joint probability 
density function is expressed by the probability den-
sity function of single random parameters as fol-
lows: 

1 2 1 1 2 2( , ,..., ,... ) ( ) ( )... ( )... ( )i n i i n np x x x x p x p x p x p x
  (3) 
where 

2

2

( )1( ) ( , ) exp
22

i i
i i i i

ii

x mp x N m 
 

 
   

 
(4) 

is the probability density function of the random 

parameter ( ),iX  where  22 ( )i i iX m  E is the 

variance and i denotes the standard deviation of 

( ).iX   
It is seen that if the random parameters 
( ), 1, 2,.., ,iX i n  are random independent Gauss-

ian variables, two moments – the mean value im  

and the standard deviation i  (or the variance 2
i ) 

describe the probability density function of each 
random variable ( ).iX   

The random vector (1) now can be replaced by a 
deterministic vector: 

2 2 2 2
1 1 2 2( , ), ( , ),..., ( , ),..., ( , )i i n nY m m m m       (5) 

which is described by moments im  and 
2 , 1, 2,..., .i i n   

3. MULTISCALE IDENTIFICATION 
PROBLEM FORMULATION IN 
STOCHASTIC CONDITIONS  

The goal of identification in multiscale model-
ling is to find a vector of material and geometrical 
parameters X treated as design variables on the mi-
cro-level which minimize an objective function 
Jo=Jo(u,) dependent on state fields of displace-
ments u and strains  on the macro-level of the 
structure (Burczyński & Kuś, 2009). In the consid-
ered problem the vector X=X(γ) contains random 
parameters which should be determined from exper-
imental statistical data.  
One assumes that available measurement data of 
random displacements ˆ ˆ( , ) ( )k k u x u  at sen-
sor points (figure 3) , 1, 2,..., ,l l Kx  and strains 
ˆ ˆ( , ) ( )l l   x  at sensor points , 1,2,..., ,l l Lx  

are characterized by the mean values 
ˆ ˆ ( )

k km u Eu and ˆ ˆ ( )
l lm   E and variances 

22
ˆˆ ( )

k kk m    u uE u and 
22

ˆ ˆˆ ( )
l l m      l

E . 
 

a)  b) 

 
 
Fig. 3. Sensors in: a) the real object and b) the computational 
model. 

 

 
1 2( , ,..., ,... )i np x x x x 

 

/2

1 1 ( )( )
(2 )

ij i i j jn
K x m x m



 
   
 KK
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The identification problem is solved by convert-
ing it into a constrained minimization problem. One 
constructs a functional which represents a distance 
between measured ˆ ( )k u and ˆ ( )l   and theoretical 

values of displacements ( )ku x and strains ( )l x : 

 
1 1

ˆˆ( ) ( ) ( ) ( )
K L

k k l l
k l

J a b   
 

    u x u x  (6) 

where a and b are scaling coefficients. 
Unknown material and geometrical parameters 

at the micro-level  are described by random varia-
bles ( ) [ ( )], 1,2,... .iX i N  X  It means that 

( )J J X . 
The problem of finding parameters ( )X is for-

mulated as the nonlinear stochastic programming 
problem which is stated as follows: 
 

Find a vector ( ) [ ( )], 1,2,... ,iX i n  X which 
minimizes the objective functional ( )J J X with 

imposed constraints i i ix X x   . 
 

where andi ix x  are limits of Xi.  
The stochastic problem stated above can be con-

verted into an equivalent deterministic task. The 
objective functional ( )J J X  can be approximated 
as follows: 

2

1
( ) ( ) ( ) ( )

N

i o
i i m

JJ J m X m J
X



 
    
 
 


X

X XX X

  (7) 
( )oJ X being a linear function of normally distribut-

ed variables ( )iX  has also the normal distribution 
which is described by the mean value and variance 
as follows: 

2

2 2

1
( ) and

o o i

N

J o J X
i i m

Jm J m
X
 


 
  
 
 


X

X  

  (8) 
Now a new deterministic objective functional 

can be defined as follows: 
 2

1 2o oJ JI c m c    (9) 

where 1c and 2c are non-negative scaling weights 
indicating the relative importance for minimization 
of the mean 

oJm and the variance 2
oJ . Setting c2=0 

would mean that the mean value of 
oJm is to be min-

imized with no regard to the variance , while the 

choice c1=0 would imply that one is interested in 
minimizing the dispersion of about an arbitrary 
mean value. The case c1=c2=1 attaches equal im-
portance to both characteristics. 

Now the problem is formulated as follows: 

2 2 2

min

with constraints and ,
Y

i i i i i i

I

m m m         
 
  (10) 
where 2 2, and ,i i i im m      are limits of mean val-
ues and variances, respectively. 

Thus, the original stochastic programming prob-
lem is reduced to the nonlinear deterministic prob-
lem which can be solved using the well-know stand-
ard procedure but the main problem consists in the 
calculation of the derivatives JXi, i = 1,2,…,N. It 
is caused by the fact that in the general situation it is 
impossible to express J in the explicit form with 
respect to random parameters ( ), 1, 2,...,iX i N  . 

The problem of finding derivatives / iJ X   can be 
solved using the idea of stochastic shape sensitivity 
analysis (Burczyński, 1995a).  

In the present paper the problem of minimization 
of the objective functional is solved using the evolu-
tionary algorithms (Burczyński et al., 2006). 

If one assumes that 

 

1 1
1 1

ˆˆ

2 22 2
2 22 2

ˆˆ

and

and

a bc a c b
m m

a bc a c b



 

 

 

u

u

 (11) 

where 1 2 1 2, , anda a b b are new scaling coefficients 
then the deterministic objective function I can be 
expressed as follows: 

 

 (12) 
The objective functional (12) incorporates the 

differences of mean values and variances of dis-
placements and/or strains obtained from numerical 
analysis and measurements. The mean values and 
variances for the numerical analysis can be obtained 
by solving direct problem with use of computational 
stochastic methods as the stochastic finite element 
method (Kleiber & Hien, 1992) or the stochastic 

 2 2
ˆ ˆ

1 2 2
1 1ˆ ˆ

k k k k

k k

K K
u u u u

k ku u

m m
I a a

m
 

 

 
   

 2 2
ˆ ˆ

1 2 2
1 1ˆ ˆ

l ll l

l l

L L

l l

m m
b b

m
  

 

 
 

 
 
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boundary element method (Burczyński & 
Skrzypczyk, 1999). 

In the paper averaged material properties for the 
RVE are obtained with use of the homogenization 
method based on the stochastic FEM analysis. The 
Monte Carlo (MC) based FEM method is applied. 
The main disadvantage of the MC is a large number 
of FEM computations needed to obtain stochastic 
results. The material properties of the composite are 
randomly generated with the prescribed mean value 
and variance. The Muller-Box randomization is used 
to create random material properties. The homogeni-
zation method is used for each set of material prop-
erties in MC method. The results obtained in each 
run of MC method are collected and used to present 
stochastic results of analysis. The presented ap-
proach is very time consuming. The multiscale anal-
ysis can be performed in parallel way. The averaged 
material properties are obtained on the basis of 6 
independent FEM analyses of RVE (for 3D case). 
This step can be easy parallelized with speedup 
close to linear. The MC method also can be parallel-
ized, the multiscale analyses can be performed for 
each set of material parameters.  The stochastic FEM 
analysis can be also shorten significantly by using 
other stochastic methods like perturbation method 
(Kaminski  & Kleiber, 2000; Sakata & Ashida, 
2011). 

4. THE EVOLUTIONARY ALGORITHMS 

To minimize the objective functional I (12) the 
evolutionary algorithm is used in the paper as opti-
mization method (Kuś & Burczyński, 2010; Kuś et 
al., 2011). The flowchart of the evolutionary algo-
rithm is presented in figure 4. The evolutionary algo-
rithm operates on a population of chromosomes. The 
design variables are coded into each chromosome, 
and each chromosome is a potential solution of the 
optimization problem. The initial population of 
chromosomes is created in the random way in the 
first step of the evolutionary algorithm. Then the 
objective functional values for all chromosomes are 
calculated. In the next step changes of chromosome 
genes values are performed by using evolutionary 
operators. The new generation is performed on the 
basis of the offspring population created during the 
selection process. The algorithm iterates until the 
end condition is fulfilled (expressed e.g. as a maxi-
mum number of iterations).  

 

 
 

Fig. 4. The flowchart of the evolutionary algorithm. 

6. NUMERICAL EXAMPLE OF 
IDENTIFICATION OF 
MICROSTRUCTURE MATERIAL 
PROPERTIES 

As an example of identification of random pa-
rameters the two scale structure is considered (figure 
5).The microstructure is built from two materials 
with stochastic parameters: Young’s moduli 

1 2( ) and ( )E E  and Poison’s ratios 

1 2( ) and ( ),    respectively. 
The mean values of Young's moduli 
, 1, 2

iEm i  and Poisson's ratios , 1, 2
i

m i  are 

considered to be known and the Poisson's variances 
2 , 1,2
i

i  are also known (see table 1). The goal of 
the identification is to find variances of Young’s 
moduli 1 2( ) and ( )E E  : 

 
1 2

2 2[ , ]E EY    (13) 
with constraints  

2 2 2 , 1,2
i i iE E E i       

where limits of variances are given as follows: 

1 1

2 2 2 20.0025 [ ] ; 2.2500 [ ]E EMPa MPa     

and 

2 2

2 2 2 20.25 [ ] ; 225.00 [ ]E EMPa MPa     

 
 

Initial population  
generation

Objective function  
evaluations

Evolutionary  
operators

Selection

[end condition fullfilled]
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Table 1. The material properties for the microscale 

Material parameter Value 

Young's modulus mean value 

1Em  3.4 [MPa] 

Young's modulus mean value 

2Em  72.0 [MPa] 

Poisson's ratio mean value 

1
m  0.18 

Poisson's ratio mean value 

2
m

 0.20 

Poisson's ratio variance 

1

2
  0.000625 

Poisson's ratio variance 

2

2
  0.000625 

 
The identification is performed on the basis of 

stochastic values of displacements for the macro 
model. The number of displacements sensor point 
was K=70 and displacements were measured in two 
directions on the lower part of the macromodel. The 
objective function described by (12) was applied 
with parameters a1=a2=1, b1=b2=0. The stochastic 
direct problem was solved by using MC FEM. The 
MSC.Nastran was applied for single FEM analysis 
in micro or macro-scales. The homogenization pro-
cedure was parallelized in presented approach. 

 
a)

 
 

b) 

 
Fig. 5. a) The macro model with sensor points and boundary 
conditions, b) the micromodel with two materials 

The minimization of the functional I (12) with 
respect to Y (13) was performed with use of the 
described evolutionary algorithm. The simple cross-
over combined with the Gaussian mutation and the 

uniform mutation and the ranking selection were 
used. The parameters of the evolutionary algorithm 
are shown in table 2. The operators and their proba-
bilities were chosen on the basis of previous numeri-
cal experiments based on mathematical test func-
tions and test engineering problems. 

Table 2. The evolutionary algorithm parameters 

Parameter Value 

Number of genes 2 

Number of chromosomes 10 

Probability of Gaussian mutation and simple  
crossover

 0.9 

Probability of uniform mutation
 

0.1 

Ranking selection pressure 0.8 

 
The statistical measured displacements were 

numerically simulated for the testing purposes. The 
exact results were known before identification pro-
cess. 

The results of identification after 10 iterations of 
the evolutionary algorithm are presented in Table 3. 
The obtained variances of Young’s moduli are close 
to the actual ones. The change of properties of mate-
rial number 2 had bigger influence on the displace-
ments in the macroscale, the result obtained for this 
material are closer to actual one. 

The number of identified parameters influences 
the number of genes and iterations of the evolution-
ary algorithm. The cost of computations will be 
higher in case of increasing number of identified 
parameters. 

Table 3. The results of identification 

Parameter Actual value Obtained value 

Young's modulus variance 

1

2
E  0.25 [MPa]2 0.14 [MPa]2 

Young's modulus variance 

2

2
E  25.0 [MPa]2 25.7 [MPa]2 

 

7. CONCLUSIONS 

The methodology of identification of stochastic 
parameters of the micromodel on the base of statisti-
cal measurements performed for the macroscale was 
presented in the paper. The problem was solved by 
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using the Monte Carlo FEM. The numerical example 
of identification was presented and proved proposed 
methodology. The identification of full set of ran-
dom number parameters is planned in the future 
research. The main drawback of presented method is 
very slow stochastic direct problem solving. The 
authors plan to incorporate more efficient methods 
for obtaining direct problem solutions and parallel-
ization of MC method. 
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IDENTYFIKACJA STOCHASTYCZNYCH 
PARAMETRÓW MATERIAŁOWYCH 

W MODELOWANIU WIELOSKALOWYM 

Streszczenie 
 
Artykuł jest poświęcony zagadnieniom identyfikacji para-

metrów modelu w skali mikro w ujęciu wieloskalowym. Pozwa-
la to uwzględnić wpływ parametrów materiałowych oraz geo-
metrycznych w skali mikro na rozwiązania w skali makro. Roz-
wiązanie zagadnienia identyfikacji umożliwia określenie para-
metrów struktury w skali mikro na podstawie pomiarów prze-
prowadzonych dla skali makro. Przedstawiona w pracy metodo-
logia oparta jest na założeniu, że parametry w skali mikro mają 
naturę stochastyczną i można je wyznaczyć dysponując wyni-
kami statystycznych pomiarów eksperymentalnych przemiesz-
czeń i odkształceń w skali makro. Zagadnienie sprowadzono do 
minimalizacji różnicy między charakterystykami probabilistycz-
nymi przemieszczeń i odkształceń obliczonych dla modelu 
stochastycznego oraz obiektu rzeczywistego. W tym celu zasto-
sowano koncepcję homogenizacji komputerowej, metodę Monte 
Carlo oraz algorytm ewolucyjny. Opracowaną koncepcję identy-
fikacji w warunkach stochastycznych zweryfikowano pozytyw-
nie na przykładzie numerycznym. 
 

Received: October 5, 2011 
Received in a revised form: November 25, 2011 

Accepted: December 3, 2011 
 


