Shear strength estimation of a FRP-strengthened RC beam: A comparison between an artificial neural network and guideline equations

Shear strength estimation of a FRP-strengthened RC beam: A comparison between an artificial neural network and guideline equations

Hamid Nezaminia

Department of Civil Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.

DOI:

https://doi.org/10.7494/cmms.2024.3.0830

Abstract:

In recent years, several experimental tests have been conducted on the shear strengthening of reinforced concrete (RC) beams strengthened by fiber-reinforced polymer (FRP) systems. In this regard, some equations have also been proposed to estimate the shear strength of beams reinforced with FRP systems. The aim of this study is to investigate the estimation of the shear strength of beams reinforced with FRP systems using an artificial neural network model. For this purpose, a comprehensive and extensive review of forty published articles has been carried out to compile data on 304 RC beams strengthened with externally bonded FRP systems to improve their shear strength. These laboratory results have been used to provide a database for the ANN model to evaluate the shear behavior. The input to the ANN model consists of the 11 variables, including the sectional geometry, reinforcement ratio, FRP ratio, and the characteristics of concrete, steel reinforcement, and composite material, while the output variable is the shear strength of the FRP-strengthened RC beam. In order to evaluate the effectiveness of the neural network model in estimating the shear capacity of RC beams, the results obtained from the neural network model are compared with the equations from the Publication No. 345 and ACI 440.2R guidelines. The comparison of the results shows that the predictive power of the proposed model is much better than the experimental guidelines. Specifically, the mean absolute relative error (MARE) criteria for the studied data is 13%, 34% and 39% for the ANN model, ACI 440.2R guideline and the Publication No. 345 guideline, respectively.

Cite as:

Nezaminia, H. (2024). Shear strength estimation of a FRP-strengthened RC beam: A comparison between an artificial neural network and guideline equations. Computer Methods in Materials Science, 24(3), 5 – 32. https://doi.org/10.7494/cmms.2024.3.0830

Article (PDF):

Keywords:

Concrete beam, Fiber-reinforced polymers, Shear strength, Artificial neural network, ACI440.2R

References:

Abdel-Jaber, M. S., Walker, P. R., & Hutchinson, A. R. (2003). Shear strengthening of reinforced concrete beams using different configurations of externally bonded carbon fibre reinforced plates. Materials and Structures, 36, 291–301. https://doi.org/10.1007/BF02480868.

Adhikary, B. B., & Mutsuyoshi, H. (2004). Behavior of concrete beams strengthened in shear with carbon-fiber sheets. Journal of Composites for Construction, 8(3), 258–264. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(258).

Al-Sulaimani, G. J., Sharif, A., Basunbul, I. A., Baluch, M. H., & Ghaleb, B. N. (1994). Shear repair for reinforced concrete by fiberglass plate bonding. Structural Journal, 91(4), 458–464. https://www.doi.org/10.14359/4153.

Alambeigi, K., Mohammadimehr, M., Bamdad, M., & Rabczuk, T. (2020). Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation. Acta Mechanica, 231, 3199–3218. https://doi.org/10.1007/s00707-020-02697-5.

Alwosheel, A., Cranenburgh, S. van, & Chorus, C. G. (2018). Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. Journal of choice modelling, 28, 167–182. https://doi.org/10.1016/j.jocm.2018.07.002.

Alzate, A., Arteaga, A., Diego, A. de, Cisneros, D., & Perera, R. (2013). Shear strengthening of reinforced concrete members with CFRP sheets. Materiales de Construcción, 63(310), 251–265. https://doi.org/10.3989/mc.2012.06611.

American Concrete Institute (ACI) (1996). 440R-96: State-of-the-Art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures. https://www.concrete.org/store/productdetail.aspx?ItemID=44096.

American Concrete Institute (ACI) (2008). 440.2R-08: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. https://www.concrete.org/store/productdetail.aspx?ItemID=440208.

Areias, P., Pires, M., Bac, N. V., & Rabczuk, T. (2019). An objective and path-independent 3D finite-strain beam with least-squares assumed-strain formulation. Computational Mechanics, 64, 1115–1131. https://doi.org/10.1007/s00466-019-01696-1.

Barros, J. A. O., & Dias, S. J. E. (2006). Near surface mounted CFRP laminates for shear strengthening of concrete beams. Cement and Concrete Composites, 28(3), 276–292. https://doi.org/10.1016/j.cemconcomp.2005.11.003.

Beber, A., & Campos Filho, A. (2005). CFRP composites on the shear strengthening of reinforced concrete beams. Revista IBRACON de Estruturas e Materiais, 1(3), 127–143.

Bousselham, A., & Chaallal, O. (2006). Effect of transverse steel and shear span on the performance of RC beams strengthened in shear with CFRP. Composites Part B: Engineering, 37(1), 37–46. https://doi.org/10.1016/j.compositesb.2005.05.012.

Bukhari, I. A., Vollum, R. L., Ahmad, S., & Sagaseta, J. (2010). Shear strengthening of reinforced concrete beams with CFRP. Magazine of Concrete Research, 62(1), 65–77. https://doi.org/10.1680/macr.2008.62.1.65.

Bukhari, I. A., Vollum, R., Ahmad, S., & Sagaseta, J. (2013). Shear strengthening of short span reinforced concrete beams with CFRP sheets. Arabian Journal for Science and Engineering38, 523–536. https://doi.org/10.1007/s13369-012-0333-z.

Canadian Standard Association (CSA) (2002). Design and Construction of Building Components with Fiber-Reinforced Polymers (CAN/CSA-S806-02 (R2007)). CSA Group.

Cao, S. Y., Chen, J. F., Teng, J. G., Hao, Z., & Chen, J. (2005). Debonding in RC beams shear strengthened with complete FRP wraps. Journal of composites for construction9(5), 417–428. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(417).

Carolin, A., & Täljsten, B. (2005). Experimental study of strengthening for increased shear bearing capacity. Journal of Composites for Construction9(6), 488–496. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(488).

Chaallal, O., Nollet, M. J., & Perraton, D. (1988). Shear strengthening of RC beams by externally bonded side CFRP strips. Journal of Composites for Construction, 2(2), 111–113. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(111).

Chen, J. F., & Teng, J. G. (2003). Shear capacity of FRP-strengthened RC beams: FRP debonding. Construction and Building Materials, 17(1), 27–41. https://doi.org/10.1016/S0950-0618(02)00091-0.

Collins, F., & Roper, H. (1990). Laboratory investigation of shear repair of reinforced concrete beams loaded in flexure. Materials Journal, 87(2), 149–159.

Dadgar-Rad, F., & Firouzi, N. (2021). Large deformation analysis of two-dimensional visco-hyperelastic beams and frames. Archive of Applied Mechanics, 91, 4279–4301. https://doi.org/10.1007/s00419-021-02008-x.

Deniaud, C., & Cheng, J. R. (2001). Review of shear design methods for reinforced concrete beams strengthened with fiber reinforced polymer sheets. Canadian Journal of Civil Engineering, 28(2), 271–281. https://doi.org/10.1139/l00-113.

Diagana, C., Li, A., Gedalia, B., & Delmas, Y. (2003). Shear strengthening effectiveness with CFF strips. Engineering Structures25(4), 507–516. https://doi.org/10.1016/S0141-0296(02)00208-0.

Dias, S. J. E., & Barros, J. A. O. (2012). Experimental behaviour of RC beams shear strengthened with NSM CFRP laminates. Strain48(1), 88–100. https://doi.org/10.1111/j.1475-1305.2010.00801.x.

Firouzi, N., & Kazemi, S. R. (2023). Investigation on dynamic stability of Timoshenko beam using axial parametric excitation. Applied Physics A129(12), 869. https://doi.org/10.1007/s00339-023-07155-2.

Gamino, A. L., Sousa, J. L. A. O., Manzoli, O. L., & Bittencourt, T. N. (2010). R/C structures strengthened with CFRP. Part II: analysis of shear models. Revista IBRACON de Estruturas e Materiais, 3, 24–49. https://doi.org/10.1590/S1983-41952010000100003.

Grace, N. F., Ragheb, W. F., & Abdel-Sayed, G. (2003). Flexural and shear strengthening of concrete beams using new triaxially braided ductile fabric. Structural Journal100(6), 804–814.

Grande, E., Imbimbo, M., & Rasulo, A. (2009). Effect of transverse steel on the response of RC beams strengthened in shear by FRP: Experimental study. Journal of Composites for Construction13(5), 405–414. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:5(405).

Ianniruberto, U., & Imbimbo, M. (2004). Role of fiber reinforced plastic sheets in shear response of reinforced concrete beams: Experimental and analytical results. Journal of composites for construction, 8(5), 415–424. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(415).

International Federation for Structural Concrete (fib) (2001). Externally bonded FRP reinforcement for RC structures. https://doi.org/10.35789/fib.BULL.0014.

Islam, M. R., Mansur, M. A., & Maalej, M. (2005). Shear strengthening of RC deep beams using externally bonded FRP systems. Cement and Concrete Composites27(3), 413–420. https://doi.org/10.1016/j.cemconcomp.2004.04.002.

Kamiharako, A., Maruyama, K., Takada, K., & Shimomura, T. (1997). Evaluation of shear contribution of FRP sheets attached to concrete beams. In Non-Metallic (FRP) Reinforcement for Concrete Structures. Proceedings of the Third International Symposium (FRPRCS-3). Sapporo, Japan 14–16 October 1997 (Vol. 1, pp. 467–474). Japan Concrete Institute.

Karami, B., Janghorban, M., & Rabczuk, T. (2020). Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Composites Part B: Engineering, 182, 107622. https://doi.org/10.1016/j.compositesb.2019.107622.

Kasabov, N. K. (1996). Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. MIT Press. https://doi.org/10.7551/mitpress/3071.001.0001.

Khalifa, A., & Nanni, A. (2000). Improving shear capacity of existing RC T-section beams using CFRP composites. Cement and Concrete Composites22(3), 165–174. https://doi.org/10.1016/S0958-9465(99)00051-7.

Khalifa, A., & Nanni, A. (2002). Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites. Construction and building materials, 16(3), 135–146. https://doi.org/10.1016/S0950-0618(02)00002-8.

Khalifa, A., Tumialan, G., Nanni, A., & Belarbi, A. (1999). Shear strengthening of continuous reinforced concrete beams using externally bonded carbon fiber reinforced polymer sheets. Scientific Programming188, 995–1008.

Kim, G., Sim, J., & Oh, H. (2008). Shear strength of strengthened RC beams with FRPs in shear. Construction and Building Materials22(6), 1261–1270. https://doi.org/10.1016/j.conbuildmat.2007.01.021.

Leung, C. K., Chen, Z., Lee, S., Ng, M., Xu, M., & Tang, J. (2007). Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips. Journal of Composites for Construction11(5), 487–496. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(487).

Mabsout, M., Tarhini, K., Jabakhanji, R., & Awwad, E. (2004). Wheel load distribution in simply supported concrete slab bridges. Journal of Bridge Engineering, 9(2), 147–155. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:2(147).

Management and Planning Organization of Iran (MPO) (2006). The guideline for design specification of strengthening RC buildings using fiber reinforced polymers (FRP) (Publication No. 345). Office of Technical Affairs Deputy Technical, Criteria Codification and Earthquake Risk Reduction Affairs Bureau.

Maruyama, K. (Ed.) (2001). I. Recommendations for upgrading of concrete structures with use of continuous fiber sheet. Japan Society of Civil Engineers.

Mirmiran, A., Shahawy, M., Nanni, A., Karbhari, V. (2004). Bonded Repair and Retrofit of Concrete Structures Using FRP Composites – Recommended Construction Specifications and Process Control Manual (NCHRP Report 514). Transportation Research Board. https://doi.org/10.17226/22034.

Mofidi, A., & Chaallal, O. (2014). Tests and design provisions for reinforced-concrete beams strengthened in shear using FRP sheets and strips. International Journal of Concrete Structures and Materials8, 117–128. https://doi.org/10.1007/s40069-013-0060-1.

Mofidi, A., Thivierge, S., Chaallal, O., & Shao, Y. (2014). Behavior of reinforced concrete beams strengthened in shear using L-shaped CFRP plates: Experimental investigation. Journal of Composites for Construction, 18(2), 04013033. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000398.

Monti, G., & Liotta, M. A. (2007). Tests and design equations for FRP-strengthening in shear. Construction and Building Materials, 21(4), 799–809. https://doi.org/10.1016/j.conbuildmat.2006.06.023.

Noël, M., & Soudki, K. (2011). Evaluation of FRP posttensioned slab bridge strips using AASHTO-LRFD bridge design specifications. Journal of Bridge Engineering, 16(6), 839–846. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000226.

Norris, T., Saadatmanesh, H., & Ehsani, M. R. (1997). Shear and flexural strengthening of R/C beams with carbon fiber sheets. Journal of Structural Engineering, 123(7), 903–911. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(903).

Ozden, S., Atalay, H. M., Akpinar, E., Erdogan, H., & Vulaş, Y. Z. (2014). Shear strengthening of reinforced concrete T‐beams with fully or partially bonded fibre‐reinforced polymer composites. Structural Concrete, 15(2), 229–239. https://doi.org/10.1002/suco.201300031.

Panda, K. C., Bhattacharyya, S. K., & Barai, S. V. (2011). Shear strengthening of RC T-beams with externally side bonded GFRP sheet. Journal of Reinforced Plastics and Composites, 30(13), 1139–1154. https://doi.org/10.1177/0731684411417202.

Pellegrino, C., & Modena, C. (2002). Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. Journal of Composites for Construction, 6(2), 104–111. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(104).

Pellegrino, C., & Modena, C. (2008). An experimentally based analytical model for the shear capacity of FRP-strengthened reinforced concrete beams. Mechanics of Composite Materials, 44, 231–244. https://doi.org/10.1007/s11029-008-9016-y.

Saadatmanesh, H., & Ehsani, M. R. (1991). RC beams strengthened with GFRP plates. I: Experimental study. Journal of Structural Engineering, 117(11), 3417–3433. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3417).

Shahawy, M. A., Arockiasamy, M., Beitelman, T., & Sowrirajan, R. (1996). Reinforced concrete rectangular beams strengthened with CFRP laminates. Composites Part B: Engineering, 27(3–4), 225–233. https://doi.org/10.1016/1359-8368(95)00044-5.

Singh, S. B. (2013). Shear response and design of RC beams strengthened using CFRP laminates. International Journal of Advanced Structural Engineering, 5, 1–16. https://doi.org/10.1186/2008-6695-5-16.

Sobuz, H. R., Ahmed, E., Hasan, N. M. S., & Uddin, A. (2011). Use of carbon fiber laminates for strengthening reinforced concrete beams in bending. International Journal of Civil & Structural Engineering, 2(1), 67–84.

Sundarraja, M. C., & Rajamohan, S. (2009). Strengthening of RC beams in shear using GFRP inclined strips – An experimental study. Construction and Building Materials, 23(2), 856–864. https://doi.org/10.1016/j.conbuildmat.2008.04.008.

Tanarslan, H. M., Ertutar, Y., & Altin, S. (2008). The effects of CFRP strips for improving shear capacity of RC beams. Journal of Reinforced Plastics and Composites, 27(12), 1287–1308. https://doi.org/10.1177/0731684407087370.

Täljsten, B. (2003). Strengthening concrete beams for shear with CFRP sheets. Construction and Building Materials, 17(1), 15–26. https://doi.org/10.1016/S0950-0618(02)00088-0.

Teng, J. G., Chen, G. M., Chen, J. F., Rosenboom, O. A., & Lam, L. (2009). Behavior of RC beams shear strengthened with bonded or unbonded FRP wraps. Journal of Composites for Construction, 13(5), 394–404. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000040.

Triantafillou, T. C., & Antonopoulos, C. P. (2000). Design of concrete flexural members strengthened in shear with FRP. Journal of Composites for Construction, 4(4), 198–205. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:4(198).

Triantafillou, T. C., & Plevris, N. (1992). Strengthening of RC beams with epoxy-bonded fibre-composite materials. Materials and Structures, 25, 201–211. https://doi.org/10.1007/BF02473064.

Umezu, K., Fujita, M., Nakai, H., & Tamaki, K. (1997). Shear behavior of RC beams with aramid fiber sheet. In Non-Metallic (FRP) Reinforcement for Concrete Structures. Proceedings of the Third International Symposium (FRPRCS-3). Sapporo, Japan 14–16 October 1997 (Vol 1, pp. 491–498). Japan Concrete Institute.

Zhang, Z., & Hsu, Ch.-T. T. (2005). Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates. Journal of Composites for Construction, 9(2), 158–169. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158).

Zhang, Z., Hsu, Ch.-T. T., & Moren, J. (2004). Shear strengthening of reinforced concrete deep beams using carbon fiber reinforced polymer laminates. Journal of Composites for Construction, 8(5), 403–414. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(403).

Żur, K. K., Firouzi, N., Rabczuk, T., & Zhuang, X. (2023). Large deformation of hyperelastic modified Timoshenko–Ehrenfest beams under different types of loads. Computer Methods in Applied Mechanics and Engineering, 416, 116368. https://doi.org/10.1016/j.cma.2023.116368.