An analytical model for the tool center point placement in Robotic Roller Forming

An analytical model for the tool center point placement in Robotic Roller Forming

Thomas Stewens1,2, Yi Liu1, Ling Wang3, Junying Min1

1School of Mechanical Engineering, Tongji University, Shanghai 201804, China.
2Technical University of Darmstadt, Darmstadt, Germany.
3Siemens DISW, Shanghai, China.

DOI:

https://doi.org/10.7494/cmms.2024.2.0838

Abstract:

Robotic roller forming (RRF) is a novel process using an articulated robotic manipulator that can bend Ultra-High Strength materials into thin-walled profiles. For high strength or difficult-to-form sheet materials, a laser can be employed to synchronously heat and soften the local material during RRF. The aim of RRF is to establish itself as a highly flexible process for rapid prototyping as well as for small batch production. However, in finished parts formed with different materials, a new defect that shapes the profile like that of a hook was observed. To overcome this defect and to improve the adaptability of the process, a new analytical model is suggested for the automatic calculation of the tool center point based on the given process parameters. The model was compared to the previous state, where the hook defect was noticeably reduced. Additionally, the control of the bend radius was studied, and the resulting bend radius diverged from the target radius by 0.04 mm (2.45%). Further, when examining the reproducibility, the same bend angles could be achieved as in previous experiments using the constant laser power density. Finally, the development of the bend allowance was studied in various experiments. The analytical model for RRF is a promising method for calculating tool placement and controlling the bend radius in a freeform environment.

Cite as:

Stewens, T., Liu, Y., Wang, L., & Min, J. (2024). An analytical model for the tool center point placement in Robotic Roller Forming. Computer Methods in Materials Science, 24(2), 39–48. https://doi.org/10.7494/cmms.2024.2.0838

Article (PDF):

Keywords:

Robotic forming, Bending, Analytical model, Tool center point

References:

Abeyrathna, B., Abvabi, A., Rolfe, B., Taube, R., & Weiss, M. (2016). Numerical analysis of the flexible roll forming of an automotive component from high strength steel. IOP Conference Series: Materials Science and Engineering, 159, 5–12. https://doi.org/10.1088/1757-899X/159/1/012005.

Allwood, J. M., Duncan, S. R., Cao, J., Hirt, G., Groche, P., Kinsey, B., Kuboki, T., Liewald, M., Sterzing, A., & Tekkaya, A. E. (2016). Closed-loop control of product properties in metal forming. CIRP Annals, 65(2), 573–596. https://doi.org/10.1016/j.cirp.2016.06.002.

Aomura, S., & Koguchi A. (2002). Optimized bending sequences of sheet metal bending by robot. Robotics and Computer-Integrated Manufacturing, 18(1), 29–39. https://doi.org/10.1016/S0736-5845(01)00031-X.

ATI Industrial Automation – A Novanta Company (n.d.). F/T Sensor: Omega191 IP65/IP68. https://www.ati-ia.com/products/ft/ft_models.aspx?id=Omega191+IP65%2FIP68.

Badr, O. M., Rolfe, B., Zhang, P., & Weiss, M. (2017). Applying a new constitutive model to analyse the springback behaviour of titanium in bending and roll forming. International Journal of Mechanical Sciences, 128–129, 389–400. https://doi.org/10.1016/j.ijmecsci.2017.05.025.

Bharti, S., Paul, E., Uthaman, A., Krishnaswamy, H., Klimchik, A., & Boby, R. A. (2024). Systematic analysis of geometric inaccuracy and its contributing factors in roboforming. Scientific Reports, 14, 20291. https://doi.org/10.1038/s41598-024-70746-3.

Cinar, Z., Asmael, M., Zeeshan, Q., & Safaei, B. (2021). Effect of springback on A6061 sheet metal bending: A review. Jurnal Kejuruteraan, 33(1), 13–26.

Doege, E., & Behrens, B.-A. (2017). Handbuch Umformtechnik. Springer.

DIN (2003). DIN 8586:2003-09: Fertigungsverfahren Biegeumformen – Einordnung, Unterteilung, Begriffe.

DIN (2020). DIN 8580:2020-1: Fertigungsverfahren – Begriffe, Einteilung.

Fritz, A. H. (2015). Fertigungstechnik (S. Günter, Ed.). Springer Vieweg Berlin, Heidelberg.

Ghiabakloo, H., Kim, J., & Kang, B.-S. (2018). An efficient finite element approach for shape prediction in flexibly-reconfigurable roll forming process. International Journal of Mechanical Sciences, 142–143, 339–358. https://doi.org/10.1016/j.ijmecsci.2018.05.005.

Ilangovan, B., Monfared, R. P., & Jackson, M. (2016). An automated solution for fixtureless sheet metal forming. The International Journal of Advanced Manufacturing Technology, 82, 315–326. http://doi.org/10.1007/s00170-015-7366-x.

Klocke, F. (2006). Fertigungsverfahren (vol. 4: Umformen).Springer Vieweg Berlin, Heidelberg.

Liu, Y., Min, J., & Lin, J. (2021). Robotic roller forming process and strategies to eliminate geometrical defect of edge waves.In G. Daehn, J. Cao, B. Kinsey, E. Tekkaya, A. Vivek, & Y. Yoshida (Eds.), Forming the Future. Proceedings of the 13th International Conference on the Technology of Plasticity (pp. 479–491). Springer Cham. https://doi.org/10.1007/978-3-030-75381-8_40.

Liu, Y., Min, J., Zhang, J., Cai, W., Carlson, B. E., Bobel, A. C., Hector Jr, L. G., & Sachdev, A. K. (2022). Laser-assisted robotic roller forming of an ultrahigh strength maternsitic steel. Journal of Manufacturing Processes, 82, 109–202. https://doi.org/10.1016/j.jmapro.2022.07.066.

Liu, Y., Qiu, J., Wang, J., Bambach, M., & Min, J. (2023a). Fabrication of thin-walled hat-shaped beams from ultrahigh strength steel by laser-assisted robotic roller forming. Smart Manufacturing, 1, 2340001. https://doi.org/10.1142/s273754982340001x.

Liu, Y., Wang, J., Cai, W., Carlson, B. E., Lian, J., & Min, J. (2023b). A thermo-metallurgical-mechanical model for microstructure evolution in laser-assisted robotic roller forming of ultrahigh strength martensitic steel. Journal of Materials Research and Technology, 25, 451–464. https://doi.org/10.1016/j.jmrt.2023.05.228.

Liu, Y., Qiu, J., Wang, J., Lian, J., Hou, Z., & Min, J. (2024). An iterative path compensation method for double-sided robotic roller forming of compact thin-walled profiles. Robotics and Computer-Integrated Manufacturing, 86, 102689. https://doi.org/10.1016/j.rcim.2023.102689.

MakeItFrom.com (2020). 6061-T6 Aluminum. https://www.makeitfrom.com/material-properties/6061-T6-Aluminum.

Min, J., Wang, J., Lian, J., Liu, Y., & Hou, Z. (2023). Laser-assisted robotic roller forming of ultrahigh-strength steel QP1180 with high precision. Materials, 16(3), 1026. https://doi.org/10.3390/ma16031026.

Oberg, E., Jones, F. D., Horton, H., Ryffel, H., & McCauley, C. (2020). Machinery’s Handbook (L. Brengelman, Ed.). Industrial Press.

Panthi, S. K., Ramakrishnan, N., Pathak, K. K., & Chouhan, J. S. (2007).An analysis of springback in sheet metal bending using finite element method (FEM). Journal of Materials Processing Technology, 186(1–3), 120–124. https://doi.org/10.1016/j.jmatprotec.2006.12.026.

Panthi, S. K., Ramakrishnan, N., Ahmed, M., Singh, S. S., & Goel, M. D. (2010). Finite Element Analysis of sheet metal bending process to predict the springback. Materials and Design, 31(2), 657–662. https://doi.org/10.1016/j.matdes.2009.08.022.

Petru, C.-D., Crenganiș, M., Breaz, R.-E., Racz, S.-G., Gîrjob, C.-E., & Drașovean, P. (2024). Development of a digital twin for the ABB IRB 1200 robot in sheet metal forming processes. Procedia Computer Science, 242, 228–235. https://doi.org/10.1016/j.procs.2024.08.253.

Sedlmaier, A., Dietl, T., & Ferreira, P. (2017). Digitalization in roll forming manufacturing. Journal of Physics: Conference Series, 896, 12–38. https://doi.org/10.1088/1742-6596/896/1/012038.

Womack, J. P., & Jones, D. T. (1997). Lean thinking – banish waste and create wealth in your corporation. Journal of the Operational Research Society, 48(11), 1144–1150. https://doi.org/10.1057/palgrave.jors.2600967.