Modeling the thermo-mechanical response and phase changes in metallic additive manufacturing (MAM) processes using a dissipative phase-field model

Modeling the thermo-mechanical response and phase changes in metallic additive manufacturing (MAM) processes using a dissipative phase-field model

Roya Darabi, Erfan Azinpour, Ana Reis, Jose Cesar de Sa

Faculty of Engineering of University of Porto (FEUP), FEUP campus, Rua Dr. Roberto Frias, 400, Porto, 4200-465, Portugal.

DOI:

https://doi.org/10.7494/cmms.2024.2.0834

Abstract:

Additive manufacturing (AM) has emerged as a highly promising manufacturing technique, offering unprecedented possibilities for creating complex geometries and functional structures. However, harnessing the full potential of AM requires the development of a robust computational framework capable of capturing the intricate multi-scale and multi-physics nature of the process. The constitutive and structural responses encountered in AM are particularly challenging to reproduce due to the complex behavior of the material involved. This research aims to address these challenges by presenting a comprehensive computational approach that incorporates a material model capable of accurately representing the behavior of different phases occurring during AM. To achieve this, the finite element method, using the Lagrangian framework in the implicit time scheme, is employed through the widely adopted ABAQUS software. Computational implementation is facilitated using the FORTRAN programming language. By employing weakly coupled thermal and mechanical constitutive equations, the framework enables the analysis of thermal stresses, strains, and displacements during realistic solidification processes, which inherently involve highly nonlinear constitutive relations. Through a series of numerical examples, the capabilities of the proposed model are demonstrated across various computational scales, particularly during the rapid melting and solidification phases. These simulations reveal the formation of residual stresses, which can lead to part distortion and have detrimental effects on the mechanical properties of the manufactured components. This research contributes to the advancement of additive manufacturing by providing a reliable computational tool that integrates the complex interplay between thermal and mechanical phenomena. The developed framework enhances our understanding of the AM process, offering valuable insights into the factors influencing the structural integrity and performance of additively manufactured parts.

Cite as:

Darabi, R., Azinpour, E., Reis, A., & Cesar de Sa, J. (2024). Modeling the thermo-mechanical response and phase changes in metallic additive manufacturing (MAM) processes using a dissipative phase-field model. Computer Methods in Materials Science, 24(2), 5 – 25. https://doi.org/10.7494/cmms.2024.2.0834

Article (PDF):

Keywords:

Metallic additive manufacturing, Direct energy deposition, Finite element method, ABAQUS, Phase transformations, Residual stress

References:

Alart, P., Maisonneuve, O., & Rockafellar, R. T. (Eds.) (2006). Nonsmooth Mechanics and Analysis: Theoretical and Numerical Advances. Springer New York, NY. https://doi.org/10.1007/0-387-29195-4.

ASTM International (2013). ASTM International Technical Committee F42 on Additive Manufacturing Technologies. 19428.

Bayat, M., Klingaa, C. G., Mohanty, S., De Baere, D., Thorborg, J., Tiedje, N. S., & Hattel, J. H. (2020). Part-scale thermo-mechanical modelling of distortions in laser powder bed fusion – analysis of the sequential flash heating method with experimental validation. Additive Manufacturing, 36, 101508. https://doi.org/10.1016/j.addma.2020.101508.

Chua, C., Liu, Y., Williams, R. J., Chua, C. K., & Sing, S. L. (2024). In-process and post-process strategies for part quality assessment in metal powder bed fusion: A review. Journal of Manufacturing Systems, 73, 75–105. https://doi.org/10.1016/j.jmsy.2024.01.004.

Crespo, A., & Vilar, R. (2010). Finite element analysis of the rapid manufacturing of Ti-6Al-4V parts by laser powder deposition. Scripta Materialia, 63(1), 140–143. https://doi.org/10.1016/j.scriptamat.2010.03.036.

Darabi, R., Ferreira, A., Azinpour, E., Sa, J. C. de, & Reis, A. (2022). Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model. The International Journal of Advanced Manufacturing Technology, 119(5), 3975–3993. https://doi.org/10.1007/s00170-021-08376-6.

Darabi, R., Azinpour, E., Reis, A., & Sa, J. C. de (2023). Multi-scale multi-physics phase-field coupled thermo-mechanical approach for modeling of powder bed fusion process. Applied Mathematical Modelling, 122, 572–597. https://doi.org/10.1016/j.apm.2023.06.021.

Duxbury, P. M. (2011). Statistical Physics (PHY831): Part 4: Ginzburg-Landau theory, modeling of dynamics and scaling in complex systems [Lecture notes].
https://web.pa.msu.edu/people/duxbury/courses/phy831/LectureNotesAndProblemsPart4.pdf.

Gonzalez-Ferreiro, B., Gomez, H., & Romero, I. (2014). A thermodynamically consistent numerical method for a phase field model of solidification. Communications in Nonlinear Science and Numerical Simulation, 19(7), 2309–2323. https://doi.org/10.1016/j.cnsns.2013.11.016.

Heigel, J. C., Michaleris, P., & Reutzel, E. W. (2015). Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Additive Manufacturing, 5, 9–19. https://doi.org/10.1016/j.addma.2014.10.003.

Hodge, N. E., Ferencz, R. M., & Solberg, J. M. (2014). Implementation of a thermomechanical model for the simulation of selective laser melting. Computational Mechanics, 54(1), 33–51. https://doi.org/10.1007/s00466-014-1024-2.

Horn, M., Schmitt, M., Langer, L., Schlick, G., & Seidel, C. (2024). Laser powder bed fusion recoater selection guide – comparison of resulting powder bed properties and part quality. Powder Technology, 434, 119356. https://doi.org/10.1016/j.powtec.2023.119356.

Hughes, T. J. R. (1987). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall.
Kollmannsberger, S., Carraturo, M., Reali, A., & Auricchio, F. (2019). Accurate prediction of melt pool shapes in laser powder bed fusion by the non-linear temperature equation including phase changes. Integrating Materials and Manufacturing Innovation, 8(2), 167–177. https://doi.org/10.1007/s40192-019-00132-9.

Labudovic, M., Hu, D., & Kovacevic, R. (2003). A three dimensional model for direct laser metal powder deposition and rapid prototyping. Journal of Materials Science, 38(1), 35–49. https://doi.org/10.1023/A:1021153513925.

Marcus, H. L., Beaman, J. J., Barlow, J. W., Bourell, D. L., & Crawford, R. H. (Eds.) (1992). Solid Freeform Fabrication Proceedings. September 1992. The University of Texas at Austin.

Muránsky, O., Hamelin, C. J., Patel, V. I., Luzin, V., & Braham, C. (2015). The influence of constitutive material models on accumulated plastic strain in finite element weld analyses. International Journal of Solids and Structures, 69–70, 518–530. https://doi.org/10.1016/j.ijsolstr.2015.04.032.

Noll, I., Bartel, T., & Menzel, A. (2020). A computational phase transformation model for selective laser melting processes. Computational Mechanics, 66(6), 1321–1342. https://doi.org/10.1007/s00466-020-01903-4.

Novick-Cohen, A. (2008). Chapter 4. The Cahn–Hilliard equation. In C. M. Dafermos & M. Pokorný (Eds.), Handbook of Differential Equations: Evolutionary Equations (Vol. 4, pp. 201–228). Elsevier. https://doi.org/10.1016/S1874-5717(08)00004-2.

Peng, H., Ghasri-Khouzani, M., Gong, S., Attardo, R., Ostiguy, P., Rogge, R. B., Gatrell, B. A., Budzinski, J., Tomonto, C., Neidig, J., Shankar, M. R., Billo, R., Go, D. B., & Hoelzle, D. (2018). Fast prediction of thermal distortion in metal powder bed fusion additive manufacturing: Part 2, a quasi-static thermo-mechanical model. Additive Manufacturing, 22, 869–882. https://doi.org/10.1016/j.addma.2018.05.001.

Penrose, O., & Fife, P. C. (1990). Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D: Nonlinear Phenomena, 43(1), 44–62. https://doi.org/10.1016/0167-2789(90)90015-H.

Roy, S., Juha, M., Shephard, M. S., & Maniatty, A. M. (2018). Heat transfer model and finite element formulation for simulation of selective laser melting. Computational Mechanics, 62(3), 273–284. https://doi.org/10.1007/s00466-017-1496-y.
Stender, M. E., Beghini, L. L., Sugar, J. D., Veilleux, M. G., Subia, S. R., Smith, T. R., San Marchi, Ch. W., Brown, A. A., & Dagel, D. J. (2018). A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Additive Manufacturing, 21, 556–566. https://doi.org/10.1016/j.addma.2018.04.012.

Szost, B. A., Terzi, S., Martina, F., Boisselier, D., Prytuliak, A., Pirling, T., Hofmann, M., & Jarvis, D. J. (2016). A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed ti–6Al–4V components. Materials & Design, 89, 559–567. https://doi.org/10.1016/j.matdes.2015.09.115.

Tan, H., Fang, Y., Zhong, C., Yuan, Z., Fan, W., Li, Z., Chen, J., & Lin, X. (2020). Investigation of heating behavior of laser beam on powder stream in directed energy deposition. Surface and Coatings Technology, 397, 126061. https://doi.org/10.1016/j.surfcoat.2020.126061.

Thompson, S. M., Bian, L., Shamsaei, N., & Yadollahi, A. (2015). An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing, 8, 36–62. https://doi.org/10.1016/j.addma.2015.07.001.

Tian, J., Xu, P., & Liu, Q. (2020). Effects of stress-induced solid phase transformations on residual stress in laser cladding a Fe-Mn-Si-Cr-Ni alloy coating. Materials and Design, 193, 108824. https://doi.org/10.1016/j.matdes.2020.108824.

Wang, J.-h., Han, F.-z., Chen, S.-f., & Ying, W.-s. (2019). A novel model of laser energy attenuation by powder particles for laser solid forming. International Journal of Machine Tools and Manufacture, 145, 103440. https://doi.org/10.1016/j.ijmachtools.2019.103440.

Wang, Q., Li, J., Gouge, M., Nassar, A. R., Michaleris, P., & Reutzel, E. W. (2017). Physics-based multivariable modeling and feedback linearization control of melt-pool geometry and temperature in directed energy deposition. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 139(2), 1–12. https://doi.org/10.1115/1.4034304.

Wang, S.-L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun, R. J., & McFadden, G. B. (1993). Thermodynamically-consistent phase-field models for solidification. Physica D: Nonlinear Phenomena, 69(1), 189–200. https://doi.org/10.1016/0167-2789(93)90189-8.

Warner, J. H., Ringer, S. P., & Proust, G. (2024). Strategies for metallic powder reuse in powder bed fusion: A review. Journal of Manufacturing Processes, 110, 263–290. https://doi.org/10.1016/j.jmapro.2023.12.066.

Williams, R. J., Davies, C. M., & Hooper, P. A. (2018). A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Additive Manufacturing, 22, 416–425. https://doi.org/10.1016/j.addma.2018.05.038.

Zhang, Y., Chen, Q., Guillemot, G., Gandin, C. A., & Bellet, M. (2018). Numerical modelling of fluid and solid thermomechanics in additive manufacturing by powder-bed fusion: Continuum and level set formulation applied to track- and part-scale simulations. Comptes Rendus – Mécanique, 346(11), 1055–1071. https://doi.org/10.1016/j.crme.2018.08.008.

Zhou, Y., Jiang, D., Al-Akailah, A., & Ning, F. (2024). Understanding the formation of laser-induced melt pools with both wire and powder feeding in directed energy deposition. Additive Manufacturing, 89, 104312. https://doi.org/10.1016/j.addma.2024.104312.

Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The finite element method: Its basis and fundamentals (7th ed.). Butterworth-Heinemann. https://doi.org/10.1016/C2009-0-24909-9.