Functionally graded porous material and its application in sandwich beams for bending and vibration behaviors

Functionally graded porous material and its application in sandwich beams for bending and vibration behaviors

Lan Hoang Ton That

Faculty of Civil Engineering, HCMC University of Architecture, HCMC, Vietnam.

DOI:

https://doi.org/10.7494/cmms.2024.1.0832

Abstract:

The article describes a functionally graded porous material in an application for sandwich beams. The bending and vibration behaviors of this structure are studied using the finite element method based on a simple beam model. The influences of some parameters, e.g., the porosity factor or the exponent graded, are also studied in this article. Finally, the numerical results are presented with some discussion.

Cite as:

That, L. (2024). Functionally graded porous material and its application in sandwich beams for bending and vibration behaviors. Computer Methods in Materials Science, 24(1), 15-24. https://doi.org/10.7494/cmms.2024.1.0832

Article (PDF):

Keywords:

Functionally graded porous material, Sandwich beam, Bending, Vibration, Finite element method

References:

Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal Foams: A Design Guide.Butterworth-Heinemann.

Belarbi, M.-O., Houari, M. S. A., Hirane, H., Daikh, A. A., & Bordas, S. P. A. (2022). On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Composite Structures, 279, 114715. https://doi.org/10.1016/j.compstruct.2021.114715.

Chen, D., Gao, K., Yang, J., & Zhang, L. (2023). Functionally graded porous structures: Analyses, performances, and applications – A Review. Thin-Walled Structures,191, 111046. https://doi.org/10.1016/j.tws.2023.111046.

Chen, E., Luan, S., & Gaitanaros, S. (2022). On the strength of brittle foams with uniform and gradient densities. Extreme Mechanics Letters, 51, 101598. https://doi.org/10.1016/j.eml.2021.101598.

Felippa, C. A. (2004). Introduction to Finite Element Methods. https://quickfem.com/wp-content/uploads/IFEM.Ch00.pdf.

Kien, N. D. (2007). Free vibration of prestress Timoshenko beams resting on elastic foundation. Vietnam Journal of Mechanics, 29(1), 1–12. https://doi.org/10.15625/0866-7136/29/1/5586.

Mei, H., Tan, Y., Huang, W., Chang, P., Fan, Y., & Cheng, L. (2021). Structure design influencing the mechanical performance of 3D printing porous ceramics. Ceramics International, 47(6), 8389-8397. https://doi.org/10.1016/j.ceramint.2020.11.203.

Sayyad, A. S., & Avhad, P. V. (2019). On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams. Journal of Solid Mechanics, 11(1), 166–180. https://doi.org/10.22034/jsm.2019.664227.

Shen, C. J., Lu, G., & Yu, T. X. (2013). Dynamic behavior of graded honeycombs – A finite element study. Composite Structures, 98, 282–293. https://doi.org/10.1016/j.compstruct.2012.11.002.

Veloso, F., Gomes-Fonseca, J., Morais, P., Correia-Pinto, J., Pinho, A. C. M., & Vilaça, J. L. (2022). Overview of Methods and Software for the Design of Functionally Graded Lattice Structures.Advanced Engineering Materials, 24(1), 2200483. https://doi.org/10.1002/adem.202200483.

Vo, P. T., Thai, H.-T., Nguyen, T.-K., Maheri, A., & Lee, J. (2014). Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineering Structures, 64, 12–22. https://doi.org/10.1016/j.engstruct.2014.01.029.

Wu, J., Chen, L., Wu, R., & Chen, X. (2021). Nonlinear Forced Vibration of Bidirectional Functionally Graded Porous Material Beam. Shock and Vibration, 2021(1), 6675125. https://doi.org/10.1155/2021/6675125.