Simulation analysis for the efficiency enhancement of Sb2S3 solar cell using SCAPS-1D

Simulation analysis for the efficiency enhancement of Sb2S3 solar cell using SCAPS-1D

Mubarak Hamad Oglah, Watban Ibrahim Mahmood, Nawras Basheer Adday

Department of Mechanics Engineering, College of Al-Shirgat Engineering, Tikrit University, Iraq.

DOI:

https://doi.org/10.7494/cmms.2023.4.0817

Abstract:

The simulation analysis was performed to enhance the efficiency of Sb2S3 solar cells using the SCAPS-1D software. The Sb2S3 compound was used as the absorber layer in the solar cell. The simulation was conducted to verify the efficiency and accuracy of the results obtained from the program. The results were found to be in agreement with the practical results. The original cell’s efficiency was 11.47% with a fill factor of 61.18%, and after the simulation, the efficiency was found to be 11.43% with a fill factor of 61.2%. To enhance the efficiency of the solar cell, a reflective background layer (BSL) was added. Different BSL layers were examined, including SnS, Si, CIGS, CZTSSe, and CUSbS3, and the best reflective layer was found to be CUSbS3. The solar cell structure was designed as follows: glass/Mo/CUSbS3/Sb2S3/CdS/i:ZnO/AL:ZnO. After adding the reflective layer, the efficiency of the solar cell was found to be 20.59% with a fill factor of 87.53%. The results suggest that adding reflective layers to solar cells can enhance their performance and increase their efficiency.

Cite as:

Oglah, M., Mahmood, W., & Adday, N. (2023). Simulation analysis for the efficiency enhancement of Sb2S3 solar cell using SCAPS-1D. Computer Methods in Materials Science, 23(4), 19-29. https://doi.org/10.7494/cmms.2023.4.0817

Article (PDF):

Keywords:

Numerical simulation, Efficiency, Solar cells, Sb2S3 compound, SCAPS-1D

References:

Abdelbaki, Ch., & Labbani, R. (2017). Study of CZTS and CZTSSe solar cells for buffer layers selection. Applied Surface Science, 424(2), 251–255. https://doi.org/10.1016/j.apsusc.2017.05.027.

Berg, D.M., Djemour, R., Gütay, L., Zoppi, G., Siebentritt, S., & Dale, P.J. (2012). Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films, 520(19), 6291–6294. https://doi.org/10.1016/J.TSF.2012.05.085.

Boumaour, M., Sali, S., Kermadi, S., Zougar, L., Bahfir, A., & Chaieb, Z. (2019). High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: a numerical case study. Journal of Taibah University for Science, 13(1), 696–703. https://doi.org/10.1080/16583655.2019.1623476.

Chen, J., Liu, R., Zhu, L., Chen, W., Dong, C., Wan, Z., Cao, W., Zhang, X., Peng, R., & Wang, M. (2021). Sb2S3-based bulk/nano planar heterojunction film solar cells with graphene/polymer composite layer as hole extracting interface. Materials Letters, 300, 130190. https://doi.org/10.1016/j.matlet.2021.130190.

Chen, Z. & Chen, G. (2020). The effect of absorber thickness on the planar Sb2S3 thin film solar cell: Trade-off between light absorption and charge separation. Solar Energy, 201, 323–329. https://doi.org/10.1016/j.solener.2020.02.074.

Choi, Y.C., Lee, D.U., Noh, J.H., Kim, E.K., & Seok, S.I. (2014a). Highly improved Sb2S3 sensitized‐inorganic–organic hetero-junction solar cells and quantification of traps by deep‐level transient spectroscopy. Advanced Functional Materials, 24(23), 3587–3592. https://doi.org/10.1002/adfm.201304238.

Choi, Y.C., Lee, Y.H., Im, S.H., Noh, J.H., Mandal, T.N., Yang, W.S., & Seok, S.I. (2014b). Efficient inorganic‐organic hetero-junction solar cells employing Sb2(Sx/Se1‐x)3 graded‐composition sensitizers. Advanced Energy Materials, 4(7), 1301680. https://doi.org/10.1002/aenm.201301680.

Dixit, K. (2023). Numerical Simulation and Modeling of thin Film Heterojunction Photovoltaic Cells and its degrada-
tion analysis [Doctoral dissertation]. Dayalbag Educational Institute. https://shodhgangotri.inflibnet.ac.in/handle/20.500.14146/11273.

Eisele, W., Ennaoui, A., Schubert-Bischoff, P., Giersig, M., Pettenkofer, C., Krauser, J., Lux-Steiner, M., Zweigart, S., & Karg, F. (2003). XPS, TEM, and NRA investigations of Zn(Se,OH)/Zn(OH)2 films on Cu(In,Ga)(S,Se)2 substrates for highly efficient solar cells. Solar Energy Materials and Solar Cells, 75(1–2), 17–26. https://doi.org/10.1016/S0927-0248(02)00104-6.

Faheem, M.B., Khan, B., Feng, C., Farooq, M.U., Raziq, F., Xiao, Y., & Li, Y. (2019). All-inorganic perovskite solar cells:
energetics, key challenges, and strategies toward commercialization. ACS Energy Letters, 5(1), 290–320. https://doi.org/10.1021/acsenergylett.9b02338.

Green, M.A., Ho-Baillie, A., & Snaith, H.J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7), 506–514. https://doi.org/10.1038/NPHOTON.2014.134.

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E.D. (2016). Solar cell efficiency tables (version 48). Progress in Photovoltaics: Research and Applications, 24, 905–913. https://doi.org/10.1002/pip.2788.

Gupta, V.K., Sethi, B., Upadhyay, N., Kumar, S., Singh, R., & Singh, L.P. (2011). Iron (III) selective electrode based on S-meth-yl N-(methylcarbamoyloxy) thioacetamide as a sensing material. International Journal of Electrochemical Science, 6(3), 650–663. http://www.electrochemsci.org/papers/vol6/6030650.pdf.

Jaramillo-Quintero, O.A., Baron-Jaimes, A., Miranda-Gamboa, R.A., & Rincon, M.E. (2021). Cadmium-free ZnS interfacial layer for hydrothermally processed Sb2S3 solar cells. Solar Energy, 224, 697–702. https://doi.org/10.1016/j.sole-ner.2021.06.037.

Jin, X., Zhang, L., Jiang, G., Liu, W., & Zhu, C. (2017). High open-circuit voltage of ternary Cu2GeS3 thin film solar cells from combustion synthesized Cu-Ge alloy. Solar Energy Materials and Solar Cells, 160, 319–327. https://doi.org/10.1016/j.solmat.2016.11.001.

Koltsov, M., Gopi, S.V., Raadik, T., Krustok, J., Josepson, R., Gržibovskis, R., Vembris, A., & Spalatu, N. (2023). Development of Bi2S3 thin film solar cells by close-spaced sublimation and analysis of absorber bulk defects via in-depth photolumi-nescence analysis. Solar Energy Materials and Solar Cells, 254, 112292. https://doi.org/10.1016/j.solmat.2023.112292.

Kondrotas, R., Chen, C., & Tang, J. (2018). Sb2S3 solar cells. Joule, 2(5), 857–878. https://doi.org/10.1016/j.joule.2018.04.003.

Lee, Y.-J., Kim, B.-S., & Ifitiquar, S.M., Park, Ch., Ji, Y. (2014). Silicon solar cells: Past, present and the future. Journal of the Korean Physical Society, 65(3), 355–361. https://doi.org/10.3938/jkps.65.355.

Lee, Y.S., Chua, D., Brandt, R.E., Siah, S.C., Li, J.V., Mailoa, J.P., Lee, S.W., Gordon, R.G., & Buonassisi, T. (2014). Atomic layer deposited gallium oxide buffer layer enables 1.2 V open‐circuit voltage in cuprous oxide solar cells. Advanced Materials, 26(27), 4704–4710. https://doi.org/10.1002/adma.201401054.

Lewis, N.S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271). https://doi.org/10.1126/science.aad1920.

Abdelbaki, Ch., & Labbani, R. (2017). Study of CZTS and CZTSSe solar cells for buffer layers selection. Applied Surface Science, 424(2), 251–255. https://doi.org/10.1016/j.apsusc.2017.05.027.

Berg, D.M., Djemour, R., Gütay, L., Zoppi, G., Siebentritt, S., & Dale, P.J. (2012). Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films, 520(19), 6291–6294. https://doi.org/10.1016/J.TSF.2012.05.085.

Boumaour, M., Sali, S., Kermadi, S., Zougar, L., Bahfir, A., & Chaieb, Z. (2019). High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: a numerical case study. Journal of Taibah University for Science, 13(1), 696–703. https://doi.org/10.1080/16583655.2019.1623476.

Chen, J., Liu, R., Zhu, L., Chen, W., Dong, C., Wan, Z., Cao, W., Zhang, X., Peng, R., & Wang, M. (2021). Sb2S3-based bulk/nano planar heterojunction film solar cells with graphene/polymer composite layer as hole extracting interface. Materials Letters, 300, 130190. https://doi.org/10.1016/j.matlet.2021.130190.

Chen, Z. & Chen, G. (2020). The effect of absorber thickness on the planar Sb2S3 thin film solar cell: Trade-off between light absorption and charge separation. Solar Energy, 201, 323–329. https://doi.org/10.1016/j.solener.2020.02.074.

Choi, Y.C., Lee, D.U., Noh, J.H., Kim, E.K., & Seok, S.I. (2014a). Highly improved Sb2S3 sensitized‐inorganic–organic hetero-junction solar cells and quantification of traps by deep‐level transient spectroscopy. Advanced Functional Materials, 24(23), 3587–3592. https://doi.org/10.1002/adfm.201304238.

Choi, Y.C., Lee, Y.H., Im, S.H., Noh, J.H., Mandal, T.N., Yang, W.S., & Seok, S.I. (2014b). Efficient inorganic‐organic hetero-junction solar cells employing Sb2(Sx/Se1‐x)3 graded‐composition sensitizers. Advanced Energy Materials, 4(7), 1301680. https://doi.org/10.1002/aenm.201301680.

Dixit, K. (2023). Numerical Simulation and Modeling of thin Film Heterojunction Photovoltaic Cells and its degradation analysis [Doctoral dissertation]. Dayalbag Educational Institute. https://shodhgangotri.inflibnet.ac.in/handle/20.500.14146/11273.

Eisele, W., Ennaoui, A., Schubert-Bischoff, P., Giersig, M., Pettenkofer, C., Krauser, J., Lux-Steiner, M., Zweigart, S., & Karg, F. (2003). XPS, TEM, and NRA investigations of Zn(Se,OH)/Zn(OH)2 films on Cu(In,Ga)(S,Se)2 substrates for highly efficient solar cells. Solar Energy Materials and Solar Cells, 75(1–2), 17–26. https://doi.org/10.1016/S0927-0248(02)00104-6.

Faheem, M.B., Khan, B., Feng, C., Farooq, M.U., Raziq, F., Xiao, Y., & Li, Y. (2019). All-inorganic perovskite solar cells:
energetics, key challenges, and strategies toward commercialization. ACS Energy Letters, 5(1), 290–320. https://doi.org/10.1021/acsenergylett.9b02338.

Green, M.A., Ho-Baillie, A., & Snaith, H.J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7), 506–514. https://doi.org/10.1038/NPHOTON.2014.134.

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E.D. (2016). Solar cell efficiency tables (version 48). Progress in Photovoltaics: Research and Applications, 24, 905–913. https://doi.org/10.1002/pip.2788.

Gupta, V.K., Sethi, B., Upadhyay, N., Kumar, S., Singh, R., & Singh, L.P. (2011). Iron (III) selective electrode based on S-meth-yl N-(methylcarbamoyloxy) thioacetamide as a sensing material. International Journal of Electrochemical Science, 6(3), 650–663. http://www.electrochemsci.org/papers/vol6/6030650.pdf.

Jaramillo-Quintero, O.A., Baron-Jaimes, A., Miranda-Gamboa, R.A., & Rincon, M.E. (2021). Cadmium-free ZnS interfacial layer for hydrothermally processed Sb2S3 solar cells. Solar Energy, 224, 697–702. https://doi.org/10.1016/j.sole-ner.2021.06.037.

Jin, X., Zhang, L., Jiang, G., Liu, W., & Zhu, C. (2017). High open-circuit voltage of ternary Cu2GeS3 thin film solar cells from combustion synthesized Cu-Ge alloy. Solar Energy Materials and Solar Cells, 160, 319–327. https://doi.org/10.1016/j.solmat.2016.11.001.

Koltsov, M., Gopi, S.V., Raadik, T., Krustok, J., Josepson, R., Gržibovskis, R., Vembris, A., & Spalatu, N. (2023). Development of Bi2S3 thin film solar cells by close-spaced sublimation and analysis of absorber bulk defects via in-depth photolumi-nescence analysis. Solar Energy Materials and Solar Cells, 254, 112292. https://doi.org/10.1016/j.solmat.2023.112292.

Kondrotas, R., Chen, C., & Tang, J. (2018). Sb2S3 solar cells. Joule, 2(5), 857–878. https://doi.org/10.1016/j.joule.2018.04.003.

Lee, Y.-J., Kim, B.-S., & Ifitiquar, S.M., Park, Ch., Ji, Y. (2014). Silicon solar cells: Past, present and the future. Journal of the Korean Physical Society, 65(3), 355–361. https://doi.org/10.3938/jkps.65.355.

Lee, Y.S., Chua, D., Brandt, R.E., Siah, S.C., Li, J.V., Mailoa, J.P., Lee, S.W., Gordon, R.G., & Buonassisi, T. (2014). Atomic
layer deposited gallium oxide buffer layer enables 1.2 V open‐circuit voltage in cuprous oxide solar cells. Advanced Materials, 26(27), 4704–4710. https://doi.org/10.1002/adma.201401054.

Lewis, N.S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271). https://doi.org/10.1126/science.aad1920.