Physical and numerical simulation of the production chain of fasteners manufactured of 32CrB4 steel control-cooled in the stelmor process to develop the multiphase microstructure
Michał Piwowarczyk1, Natalia Wolańska1, Marek Wilkus2, Maciej Pietrzyk2, Łukasz Rauch2, Roman Kuziak3, Valery Pidvysots’kyy3, Krzysztof Radwański3
1CMC Poland, ul. Piłsudzkiego 82, 42-400 Zawiercie, Poland.
2AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
3Łukasiewicz Research Network, Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland.
DOI:
https://doi.org/10.7494/cmms.2023.2.0801
Abstract:
The development of the concept of Thermomechanical Controlled Processing (TMCP) in the wire rod rolling mill of CMC Poland has opened up new opportunities for the production of fasteners without the application of heat treatment. The crucial effect of TMCP in the case of wire rod rolling is its capability of shaping fine austenite grain size following the last pass, typically below 20–25 µm in the wire rod cross-section. This is a prerequisite for obtaining the required cold workability level for the cold forming of fasteners, even if hard constituents (bainite, martensite) are present in the wire rod structure. In this paper, the physical simulation and numerical modelling capabilities were described for the design of cooling conditions in the Stelmor process and cold heading operation. The investigated material was conventional 32CrB4 grade used for the fasteners production with the application of heat treatment.
Cite as:
Piwowarczyk, M., Wolańska, N., Wilkus, M., Pietrzyk, M., Rauch, Ł., Kuziak, R., Pidvysots’kyy, V., & Radwański, K. (2023). Physical and numerical simulation of the production chain of fasteners manufactured of 32CrB4 steel control-cooled in the stelmor process to develop the multiphase microstructure. Computer Methods in Materials Science, 23(2), 5-16. https://doi.org/10.7494/cmms.2023.2.0801
Article (PDF):
Keywords:
Wire rod, Stelmor process, Multiphase steels, Cold heading, Numerical modelling
References:
Andersson, J.O., Helander, T., Höglund, L., Shi, P.F. & Sundman, B. (2002). Thermo-Calc and DICTRA, computational tools for materials science. Calphad, 26(2), 273–312. https://doi.org/10.1016/S0364-5916(02)00037-8.
Avrami, M. (1939). Kinetics of phase change. I. General theory. The Journal of Chemical Physics, 7, 1103–1112. https://doi.org/10.1063/1.1750380.
Chenot, J.-L. & Bellet, M. (1992). The viscoplastic approach for the finite-element modelling of metal forming processes. In P. Hartley, I. Pillinger, C. Sturges (Eds.), Numerical modelling of material deformation processes. Research, Development and Applications (pp. 179–224). Springer London. https://doi.org/10.1007/978-1-4471-1745-2_8.
Cockroft, M.G. & Latham, D.J. (1968). Ductility and the workability of metals. Journal of the Institute of Metals, 96, 33–39.
Fisher, J.R. & Gurland, J. (1981). Void nucleation in spheroidized carbon steels. Metal Science, 15(5), 18.
Hensel, A. & Spittel, T. (1979). Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. VEB Deutscher Verlag fur Grundstoffindustrie.
Johnson, W.A. & Mehl, R.F. (1939). Reaction kinetics in processes of nucleation and growth. Transactions AIME, 135, 416–442.
Koistinen, D.P. & Marburger, R.E. (1959). A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica, 7, 59–69. https://doi.org/10.1016/0001-6160(59)90170-1.
Kolmogorov, A. (1937). K statisticheskoyteorii kristalliza-tsii metallov. Izvestiyaakademii Nauk SSSR, 1(3), 355–359 [К статистической теории кристаллиза-ции металлов. Известия Академии Наук СССР, 1(3), 355–359].
Kuziak, R., Zajac, S., Kawalla, R., Waengler, S., Stercken, K., Jakobczak, R., Urlau, R. & Hasler, R. (2008). Cold Heading Quality Low-Carbon Ultra-High-Strength Bainitic Steels. Final Report. RFCS Project No. RFSR-CT-2005-00031.
Pietrzyk, M. & Kuziak, R. (2012). Modelling phase transformations in steel. In J. Lin, D. Balint, M. Pietrzyk (Eds.), Microstructure Evolution in Metal Forming Processes (pp. 145–179). Woodhead Publishing.
Piwowarczyk, M., Wolanska, N., Pietrzyk, M., Rauch, Ł, Kuziak, R. & Zalecki, W. (2022). Phase transformation model for adjusting the cooling conditions in Stelmor process to obtain the targeted structure of thermomechanically rolled wire rod used for fastener production. Metallurgical Research Technology, 119(5), 517. https://doi.org/10.1051/metal/2022071.
Szala, J. Metilo (version 12.01a). Katowice Silesian University of Technology, Institute of Materials Science.
Szeliga, D., Gawad, J. & Pietrzyk, M. (2006). Inverse analysis for identification of rheological and friction models in metal forming. Computer Methods in Applied Mechanics and Engineering, 195, 6778–6798. https://doi.org/10.1016/j.cma.2005.03.015.