Computational intelligence based design of biomaterials

Computational intelligence based design of biomaterials

Arulraj Vinoth, Shubhabrata Datta

Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.

DOI:

https://doi.org/10.7494/cmms.2022.4.0799

Abstract:

This paper presents an overview of the applications of computational intelligence techniques, viz. artificial neural networks, fuzzy inference systems, and genetic algorithms, for the design of biomaterials with improved performance. These techniques are basically used for developing data-driven models and for optimization. The paper introduces the domain of biomaterials and how they can be designed using computational intelligence techniques. Then a brief description of the tools is made, followed by the applications of the tools in various domains of biomaterials. The applications range in all classes of materials ranging from alloys to composites. There are examples of applications for the surface treatment of biomaterials, materials for drug delivery systems, materials for scaffolds and even in implant design. It is found the tools can be effectively used for designing new and improved biomaterials.

Cite as:

Vinoth, A., & Datta, S. (2022). Computational intelligence based design of biomaterials. Computer Methods in Materials Science, 22(4), 229–262. https://doi.org/10.7494/cmms.2022.4.0799

Article (PDF):

Keywords:

Biomaterials, Design, Modelling, Optimization, Computational intelligence

References:

Abbas, H.N., Jaheel, S., & Al-dujaili, M.A.A. (n.d.). Optimize of the mechanical and physical properties of Ha/Β-TCP scaffold by using genetic algorithm method. The Iraqi Journal for Mechanical and Material Engineering, Special issue, 266–281.

Abbasi, M., Ramezani, F., Elyasi, M., Sadeghi-Aliabadi, H., & Amanlou, M. (2015). A study on quantitative structure-activity relationship and molecular docking of metalloproteinase inhibitors based on L-tyrosine scaffold. DARU Journal of Pharmaceutical Sciences, 23(1), 1–10. https://doi.org/10.1186/s40199-015-0111-z.

Al-dujaili, M.A.A., Jaheel, S., & Abbas, H.N. (2017). Preparation of HA/β-TCP scaffold and mechanical strength optimization using a genetic algorithm method. Journal of the Australian Ceramic Society, 53(1), 41–48. https://doi.org/10.1007/s41779-016-0007-5.

Al-Waily, M., Al Saffar, I.Q., Hussein, S.G., & Al-Shammari, M.A. (2020). Life enhancement of partial removable denture made by biomaterials reinforced by graphene nanoplates and hydroxyapatite with the aid of artificial neural network. Journal of Mechanical Engineering Research and Developments, 43(6), 269–285.

Anderson, J.A. (1995). An Introduction to Neural Networks. A Bradford Book, MIT Press.

Ardestani, M.M., Chen, Z., Wang, L., Lian, Q., Liu, Y., He, J., Li, D., & Jin, Z. (2014). A neural network approach for determining gait modifications to reduce the contact force in knee joint implant. Medical Engineering and Physics, 36(10), 1253–1265. https://doi.org/10.1016/j.medengphy.2014.06.016.

Arulraj, V., Datta, S., & Davim, J.P. (2022). Natural computing-based designing of hybrid UHMWPE composites for orthopedic implants. Applied Sciences, 12, 10408. https://doi.org/10.3390/app122010408.

Asadi-Eydivand, M., Solati-Hashjin, M., Fathi, A., Padashi, M., & Abu Osman, N.A. (2016). Optimal design of a 3D-printed scaffold using intelligent evolutionary algorithms. Applied Soft Computing, 39, 36–47. https://doi.org/10.1016/j.asoc.2015.11.011.

Baghaei, B., Saeb, M.R., Jafari, S.H., Khonakdar, H.A., Rezaee, B., Goodarzi, V., & Mohammadi, Y. (2017). Modeling and closed-loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery. Journal of Applied Polymer Science, 134(33), 1–12. https://doi.org/10.1002/app.45145.

Basu, B., Gowtham, N.H., Xiao, Y., Kalidindi, S.R., & Leong, K.W. (2022). Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomaterialia, 143, 1–25. https://doi.org/10.1016/j.actbio.2022.02.027.

Benkő, E., Ilič, I.G., Kristó, K., Regdon, G., Jr., Csóka, I., Pintye-Hódi, K., Srčič, S., & Sovány, T. (2022). Predicting drug release rate of implantable matrices and better understanding of the underlying mechanisms through experimental design and artificial neural network-based modelling. Pharmaceutics, 14(2). https://doi.org/10.3390/pharmaceutics14020228.

Bergmann, C.P., & Stumpf, A. (2013). Dental Ceramics: Microstructure, Properties and Degradation. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38224-6.

Bezdek, J.C. (1998). Computational intelligence defined – by everyone ! In O. Kaynak, L.A. Zadeh, B. Türkşen, I.J. Rudas (Eds.), Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications (pp. 10–37). Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58930-0_2.

Bhadeshia, H.K.D.H. (1999). Neural networks in materials science. ISIJ International, 39(10), 966–979. https://doi.org/10.2355/isijinternational.39.966.

Bhadeshia, H.K.D.H. (2008). Mathematical models in materials science. Materials Science and Technology, 24(2), 128–136. https://doi.org/10.1179/174328407X213107.

Biswas, J.K., Dey, S., Karmakar, S.K., Roychowdhury, A., & Datta, S. (2018). Design of patient specific spinal implant (pedicle screw fixation) using fe analysis and soft computing techniques. Current Medical Imaging Formerly Current Medical Imaging Reviews, 16(4), 371–382. https://doi.org/10.2174/1573405614666181018122538.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization. ACM Computing Surveys, 35(3), 268–308. https://doi.org/10.1145/937503.937505.

Booker, L. (1987). Improving search in genetic algorithms. In L. Davis (Ed.), Genetic Algorithms and Simulated Annealing (pp. 61–73). Morgan Kaufmann Publishers.

Borjali, A., Chen, A.F., Muratoglu, O.K., Morid, M.A., & Varadarajan, K.M. (2019). Detecting mechanical loosening of total hip replacement implant from plain radiograph using deep convolutional neural network. Arxiv. http://arxiv.org/abs/1912.00943.

Borjali, A., Chen, A.F., Muratoglu, O.K., Morid, M.A., & Varadarajan, K.M. (2020). Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network. Journal of Orthopaedic Research, 38(7), 1465–1471. https://doi.org/10.1002/jor.24617.

Bozzolo, G., Noebe, R.D., Abel, P.B., & Vij D.R. (2007). Applied Computational Materials Modeling. Theory, Simulation and Experiment. Springer New York, NY.

Bryksin, A.V., Brown, A.C., Baksh, M.M., Finn, M.G., & Barker, T.H. (2014). Learning from nature – Novel synthetic biology approaches for biomaterial design. Acta Biomaterialia, 10(4), 1761–1769. https://doi.org/10.1016/j.actbio.2014.01.019.

Cha, J.-Y., Yoon, H.-I., Yeo, I.-S., Huh, K.-H., & Han, J.-S. (2021). Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs. Journal of Clinical Medicine, 10(5), 1–12. https://doi.org/10.3390/jcm10051009.

Chakraborti, N. (2004). Genetic algorithms in materials design and processing. International Materials Reviews, 49(3–4), 246–260. https://doi.org/10.1179/095066004225021909.

Chakraborti, N. (2016). Chapter 12. Data-driven bi-objective genetic algorithms evonn and biogp and their applications in metallurgical and materials domain. In Computational Approaches to Materials Design: Theoretical and Practical Aspects (pp. 346–368). IGI Global. https://doi.org/10.4018/978-1-5225-0290-6.ch012.

Chakraborti, N. (2022). Data-Driven Evolutionary Modeling in Materials Technology. CRC Press. https://doi.org/10.1201/9781003201045.

Chanda, S., Gupta, S., & Pratihar, D.K. (2015a). A combined neural network and genetic algorithm based approach for optimally designed femoral implant having improved primary stability. Applied Soft Computing Journal, 38, 296–307. https://doi.org/10.1016/j.asoc.2015.10.020.

Chanda, S., Gupta, S., & Pratihar, D. K. (2015b). A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant. Journal of Biomechanical Engineering, 137(3), 1–13. https://doi.org/10.1115/1.4029061.

Chatterjee, S., Dey, S., Majumder, S., RoyChowdhury, A., & Datta, S. (2019). Computational intelligence based design of implant for varying bone conditions. International Journal for Numerical Methods in Biomedical Engineering, 35(6), 0–2. https://doi.org/10.1002/cnm.3191.

Chen, Ch.-T., & Gu, G.X. (2019). Machine learning for composite materials. MRS Communications, 9(2), 556–566. https://doi.org/10.1557/mrc.2019.32.

Cheng, Y.-Ch., Jiang, Ch.P., & Lin, D.H. (2019). Finite element based optimization design for a one-piece zirconia ceramic dental implant under dynamic loading and fatigue life validation. Structural and Multidisciplinary Optimization, 59(3), 835–849. https://doi.org/10.1007/s00158-018-2104-2.

Choudhury, S., Dhason, R., Roy, S., & Datta, S. (2022). Design optimization of peek hybrid composite cervical cage. International Journal for Multiscale Computational Engineering, 20(4), 1–16. https://doi.org/10.1615/IntJMultCompEng.2022039152.

Chua, M.Ch.H., & Chui, Ch.-K. (2016). Optimization of patient-specific design of medical implants for manufacturing. Procedia CIRP, 40, 402–406. https://doi.org/10.1016/j.procir.2016.01.078.

Cielen, D., Meysman, A., & Ali, M. (2016). Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools. Manning Publications.

Clinical Applications of Biomaterials (1982). National Institute of Health Consensus Development Conference Statement. Available from: https://consensus.nih.gov/1982/1982Biomaterials034html.htm.

Coşkun, M.İ., & Karahan, İ.H. (2018). Modeling corrosion performance of the hydroxyapatite coated CoCrMo biomaterial alloys. Journal of Alloys and Compounds, 745, 840–848. https://doi.org/10.1016/j.jallcom.2018.02.253.

Datta, S. (2016). Materials Design Using Computational Intelligence Techniques. CRC Press. https://doi.org/10.1201/9781315373003.

Datta, S., & Banerjee, M.K. (2006). Mapping the input–output relationship in HSLA steels through expert neural network. Materials Science and Engineering: A, 420(1–2), 254–264. https://doi.org/10.1016/j.msea.2006.01.037.

Datta, S., & Chattopadhyay, P.P. (2013). Soft computing techniques in advancement of structural metals. International Materials Reviews, 58(8), 475–504. https://doi.org/10.1179/1743280413Y.0000000021.

Datta, S., Zhang, Q., Sultana, N., & Mahfouf, M. (2013). Optimal design of titanium alloys for prosthetic applications using a multiobjective evolutionary algorithm. Materials and Manufacturing Processes, 28(7), 741–745. https://doi.org/10.1080/10426914.2013.773020.

Datta, S., Mahfouf, M., Zhang, Q., Chattopadhyay, P.P., & Sultana, N. (2016). Imprecise knowledge based design and development of titanium alloys for prosthetic applications. Journal of the Mechanical Behavior of Biomedical Materials, 53, 350–365. https://doi.org/10.1016/j.jmbbm.2015.08.039.

Datta, S., Roy, S., & Davim, J.P. (2019). Optimization techniques: An overview. In S. Datta, J.P. Davim (Eds.), Optimization in Industry. Present Practices and Future Scopes (pp. 1–11). Springer Cham. https://doi.org/10.1007/978-3-030-01641-8_1.

Deb, K. (1995). Optimization for Engineering Design: Algorithms and Examples. Prentice Hall of India.

Deb, K. (2001). Multi-objective Optimization Using Evolutionary Algorithms. John Wiley & Sons.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–196. https://doi.org/10.1109/4235.996017.

Deb, K., Goodman, E., Coello Coello, C.A., Klamroth, K., Miettinen, K., Mostaghim, S., & Reed, P. (Eds.) (2019). Evolutionary Multi-Criterion Optimization. 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10–13, 2019, Proceedings. Springer Cham. https://doi.org/10.1007/978-3-030-12598-1.

Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014.

Ding, F., & Chen, T. (2005). Gradient based iterative algorithms for solving a class of matrix equations. IEEE Transactions on Automatic Control, 50(8), 1216–1221. https://doi.org/10.1109/TAC.2005.852558.

Doghri, I., Lemoine, G., Martiny, P., Mathieu, S., Wucher, B., & Adam, L. (2021). Multiscaling-based integrated computational materials engineering: from academia to industry. International Journal for Multiscale Computational Engineering, 19(4), 1–40. https://doi.org/10.1615/IntJMultCompEng.2021040073.

Domínguez-Díaz, M., & Cruz-Chavez, M.A. (2015). Scaffold architecture and properties for osteoblasts cell culture: An optimization model and application by genetic algorithm. Materials Research Society Symposium Proceedings, 1753, 72–77. https://doi.org/10.1557/opl.2015.182.

Dönmez, P. (2013). Introduction to Machine Learning. Natural Language Engineering, 19(2), 285–288. https://doi.org/10.1017/s1351324912000290.

Duan, Y., Gonzalez, J.A., Kulkarni, P.A., Nagy, W.W., & Griggs, J.A. (2018). Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study. Dental Materials, 34(9), 1299–1309. https://doi.org/10.1016/j.dental.2018.06.002.

Eberhart, R.C., & Shi, Y. (2007). Computational Intelligence: Concepts to Implementations. Elsevier/Morgan Kaufmann Publishers.

Farah, J., & El-Sheik, S.M. (2020). Fuzzy simulation of drug delivery system through valve-less micropump. Pakistan Journal of Emerging Science and Technologies (PJEST), 1(1), 1–9. http://doi.org/10.5281/zenodo.4774030.

Fatouros, D.G., Nielsen, F.S., Douroumis, D., Hadjileontiadis, L.J., & Mullertz, A. (2008). In vitro–in vivo correlations of
self-emulsifying drug delivery systems combining the dynamic lipolysis model and neuro-fuzzy networks. European
Journal of Pharmaceutics and Biopharmaceutics, 69(3), 887–898. https://doi.org/10.1016/j.ejpb.2008.01.022.

Ganguly, S., Patra, A., Chattopadhyay, P.P., & Datta, S. (2016). New training strategies for neural networks with application to quaternary Al-Mg-Sc-Cr alloy design problems. Applied Soft Computing Journal, 46, 260–266. https://doi.org/10.1016/j.asoc.2016.05.017.

Ghasemabad, E.S., Zamani, I., Tourajizadeh, H., Mirhadi, M., & Zarandi, Z.G. (2022). Design and implementation of an adaptive fuzzy sliding mode controller for drug delivery in treatment of vascular cancer tumours and its optimisation using genetic algorithm tool. IET Systems Biology, 16(6), 201–219. https://doi.org/10.1049/syb2.12051.

Giri, B.K., Hakanen, J., Miettinen, K., & Chakraborti, N. (2013a). Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Applied Soft Computing, 13(5), 2613–2623. https://doi.org/10.1016/j.asoc.2012.11.025.

Giri, B.K., Pettersson, F., Saxén, H., & Chakraborti, N. (2013b). Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace. Materials and Manufacturing Processes, 28(7), 776–782. https://doi.org/10.1080/10426914.2013.763953.

Glover, F., & Kochenberger, G.A. (Eds.). (2003). Handbook of Metaheuristics. Springer New York, NY. https://doi.org/10.1007/b101874.

Goldberg, D.E. (2002). Genetic Algorithms in Search, Optimization, and Machine Learning. Pearson-Education.
Gronau, G., Krishnaji, S.T., Kinahan, M.E., Giesa, T., Wong, J.Y., Kaplan, D.L., & Buehler, M.J. (2012). A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials, 33(33), 8240–8255. https://doi.org/10.1016/j.biomaterials.2012.06.054.

Guessasma, S., & Bassir, D.H. (2010). Identification of mechanical properties of biopolymer composites sensitive to interface effect using hybrid approach. Mechanics of Materials, 42(3), 344–353. https://doi.org/10.1016/j.mechmat.2009.12.001.

Gurney, K. (2018). An Introduction to Neural Networks. CRC Press.
Haghdoost, F., Razbin, M., Bahrami, H., Barzin, J., & Ghaee, A. (2022). Modeling and optimization of the core-shell nanofibrous composite mat as a scaffold via hybrid models. Journal of Industrial Textiles, 52, 152808372211124. https://doi.org/10.1177/15280837221112406.

Halim, A.H., Ismail, I., & Das, S. (2021). Performance assessment of the metaheuristic optimization algorithms: an exhaustive review. Artificial Intelligence Review, 54(3), 2323–2409. https://doi.org/10.1007/s10462-020-09906-6.

Hamidian, A.H., Esfandeh, S., Zhang, Y., & Yang, M. (2019). Simulation and optimization of nanomaterials application for heavy metal removal from aqueous solutions. Inorganic and Nano-Metal Chemistry, 49(7), 217–230. https://doi.org/10.1080/24701556.2019.1653321.

Han, R., Yang, Y., Li, X., & Ouyang, D. (2018). Predicting oral disintegrating tablet formulations by neural network techniques. Asian Journal of Pharmaceutical Sciences, 13(4), 336–342. https://doi.org/10.1016/j.ajps.2018.01.003.

Hariharan, K., Nguyen, N.-T., Chakraborti, N., Lee, M.-G., & Barlat, F. (2014). Multi-objective genetic algorithm to optimize variable drawbead geometry for tailor welded blanks made of dissimilar steels. Steel Research International, 85(12), 1597–1607. https://doi.org/10.1002/srin.201300471.

He, S. (2021). Who is liable for the UBER self-driving crash? Analysis of the liability allocation and the regulatory model for autonomous vehicles. In S. Van Uytsel, D. Vasconcellos Vargas (Eds.), Autonomous Vehicles. Business, Technology and Law (pp. 93–111). https://doi.org/10.1007/978-981-15-9255-3_5.

Hebels, D.G.A.J., Carlier, A., Coonen, M.L.J., Theunissen, D.H., & de Boer, J. (2017). cBiT: A transcriptomics database for innovative biomaterial engineering. Biomaterials, 149, 88–97. https://doi.org/10.1016/j.biomaterials.2017.10.008.

Heljak, M.K., Święszkowski, W., Lam, C.X.F., Hutmacher, D.W., & Kurzydłowski, K.J. (2012). Evolutionary design of bone scaffolds with reference to material selection. International Journal for Numerical Methods in Biomedical Engineering, 28(6–7), 789–800. https://doi.org/10.1002/cnm.2487.

Heljak, M.K., Kurzydlowski, K.J., & Swieszkowski, W. (2017). Computer aided design of architecture of degradable tissue engineering scaffolds. Computer Methods in Biomechanics and Biomedical Engineering, 20(15), 1623–1632. https://doi.org/10.1080/10255842.2017.1399263.

Jajarmi, E., Sajjadi, S.A., & Mohebbi, J. (2019). Predicting the relative density and hardness of 3YPSZ/316L composites using adaptive neuro-fuzzy inference system and support vector regression models. Measurement: Journal of the International Measurement Confederation, 145, 472–479. https://doi.org/10.1016/j.measurement.2019.05.108.

Janssens, K., Raabe, D., Kozeschnik, E., Miodownik, M., & Nestler, B. (2010). Computational Materials Engineering: An
Introduction to Microstructure Evolution. Academic Press.

Jeong, C.G., Francisco, A.T., Niu, Z., Mancino, R.L., Craig, S.L., & Setton, L.A. (2014). Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Acta Biomaterialia, 10(8), 3421–3430. https://doi.org/10.1016/j.actbio.2014.05.012.

Jha, R., & Dulikravich, G.S. (2021). Discovery of new Ti-based alloys aimed at avoiding/minimizing formation of α′′ and ω-phase using. Metals, 11(1), 15. https://doi.org/10.3390/met11010015.

Joorabloo, A., Khorasani, M.T., Adeli, H., Mansoori-Moghadam, Z., & Moghaddam, A. (2019). Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. Journal of Industrial and Engineering Chemistry, 70, 253–263. https://doi.org/10.1016/j.jiec.2018.10.022.

Kalidindi, S.R., & De Graef, M. (2015). Materials Data Science: current status and future outlook. Annual Review of Materials Research, 45, 171–193. https://doi.org/10.1146/annurev-matsci-070214-020844.

Karimi, M.A., Pourhakkak, P., Adabi, M., Firoozi, S., Adabi, M., & Naghibzadeh, M. (2015). Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. E-Polymers, 15(2), 127–138. https://doi.org/10.1515/epoly-2014-0198.

Kartal, F., & Özveren, U. (2021). An improved machine learning approach to estimate hemicellulose, cellulose, and lignin in biomass. Carbohydrate Polymer Technologies and Applications, 2, 100148. https://doi.org/10.1016/j.carpta.2021.100148.

Kazemi, M., Ahangarani, S., Esmailian, M., & Shanaghi, A. (2022). Investigating the corrosion performance of Ti-6Al-4V biomaterial alloy with hydroxyapatite coating by artificial neural network. Materials Science and Engineering: B, 278, https://doi.org/10.1016/j.mseb.2022.115644.

Khalili, S., Khorasani, S.N., Saadatkish, N., & Khoshakhlagh, K. (2016). Characterization of gelatin/cellulose acetate nanofibrous scaffolds: Prediction and optimization by response surface methodology and artificial neural networks. Polymer Science – Series A, 58(3), 399–408. https://doi.org/10.1134/S0965545X16030093.

Khanlou, H.M., Ang, B.C., & Barzani, M.M. (2016). Prediction, modeling and characterization of surface texturing by sulfuric etchant on non-toxic titanium bio-material using artificial neural networks and fuzzy logic systems. Science and Engineering of Composite Materials, 23(4), 423–433. https://doi.org/10.1515/secm-2014-0230.

Kim, J.-E., Nam, N.-E., Shim, J.-S., Jung, Y.-H., Cho, B.-H., & Hwang, J.J. (2020). Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. Journal of Clinical Medicine, 9(4). https://doi.org/10.3390/jcm9041117.

Kondiah, P.J., Kondiah, P.P.D., Choonara, Y.E., Marimuthu, T., & Pillay, V. (2020). A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering. Pharmaceutics, 12(2). https://doi.org/10.3390/pharmaceutics12020166.

Kumar, A., & Raj, R. (2022). Design of a fractional order two layer fuzzy logic controller for drug delivery to regulate blood pressure. Biomedical Signal Processing and Control, 78, 104024. https://doi.org/10.1016/j.bspc.2022.104024.

Kumar, R., Chohan, J.S., Singh, S., Sharma, S., Singh, Y., & Rajkumar, S. (2022). Implementation of taguchi and genetic algorithm techniques for prediction of optimal part dimensions for polymeric biocomposites in fused deposition modeling. International Journal of Biomaterials, 2022, 1–7. https://doi.org/10.1155/2022/4541450.

Kumari, S., Tiyyagura, H.R., Douglas, T.E.L., Mohammed, E.A.A., Adriaens, A., Fuchs-Godec, R., Mohan, M.K., & Skirtach, A.G. (2018). ANN prediction of corrosion behaviour of uncoated and biopolymers coated cp-Titanium substrates. Materials and Design, 157, 35–51. https://doi.org/10.1016/j.matdes.2018.07.005.

Kurt, H.I., & Oduncuoglu, M. (2015). Application of a neural network model for prediction of wear properties of ultrahigh molecular weight polyethylene composites. International Journal of Polymer Science, 2015, 1–11. https://doi.org/10.1155/2015/315710.

Kwak, Y., Nguyen, V.-H., Hériveaux, Y., Belanger, P., Park, J., & Haïat, G. (2021). Ultrasonic assessment of osseointegration phenomena at the bone-implant interface using convolutional neural network. The Journal of the Acoustical Society of America, 149(6), 4337–4347. https://doi.org/10.1121/10.0005272.

Kwaria, R.J., Mondarte, E.A.Q., Tahara, H., Chang, R., & Hayashi, T. (2020). Data-driven prediction of protein adsorption on self-assembled monolayers toward material screening and design. ACS Biomaterials Science and Engineering, 6(9), 4949–4956. https://doi.org/10.1021/acsbiomaterials.0c01008.

Lahiri, D., Nag, M., Sarkar, T., Dutta, B., & Ray, R.R. (2021). Antibiofilm activity of α-amylase from bacillus subtilis and prediction of the optimized conditions for biofilm removal by Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Applied Biochemistry and Biotechnology, 193(6), 1853–1872. https://doi.org/10.1007/s12010-021-03509-9.

Langley, P. (2011). The changing science of machine learning. Machine Learning, 82(3), 275–279. https://doi.org/10.1007/s10994-011-5242-y.

Le, T.C., & Tran, N. (2019). Using machine learning to predict the self-assembled nanostructures of monoolein and phytantriol as a function of temperature and fatty acid additives for effective lipid-based delivery systems. ACS Applied Nano Materials, 2(3), 1637–1647. https://doi.org/10.1021/acsanm.9b00075.

Lee, J.H., & Jeong, S.-N. (2020). Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study. Medicine, 99(26), e20787. https://doi.org/10.1097/MD.0000000000020787.

Li, X., Liang, H., Tang, X., Wu, J., & Wang, J. (2022). A fuzzy analysis for porous bioceramic-magnetite nanoparticles-zirconia scaffold prepared by space holder technique with poly vinyl pyrrolidone (PVP) coating: Investigation of mechanical and biological properties. Ceramics International, 48(11), 16221–16231. https://doi.org/10.1016/j.ceramint.2022.02.170.

Liu, Z.K., Chen, L.-Q., & Rajan, K. (2006). Linking length scales via materials informatics. JOM, 58(11), 42–50. https://doi.org/10.1007/s11837-006-0226-2.

Madi, K., Tozzi, G., Zhang, Q. H., Tong, J., Cossey, A., Au, A., Hollis, D., & Hild, F. (2013). Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Medical Engineering & Physics, 35(9), 1298–1312. https://doi.org/10.1016/j.medengphy.2013.02.001.

Maeda, C., Kobashi, S., Shibanuma, N., Kondo, K., & Hata, Y. (2005). 3D strain detection of a support implant for an artificial hip joint using finite element method and genetic algorithm. Digital Image Computing: Techniques and Applications (DICTA’05), 23–23. https://doi.org/10.1109/DICTA.2005.2.

Mamdani (1977). Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, C-26(12), 1182–1191. https://doi.org/10.1109/TC.1977.1674779.

Manai, Y., Benrejeb, M., & Borne, P. (2011). New approach of stability for time-delay takagi-sugeno fuzzy system based on fuzzy weighting-dependent lyapunov functionals. Applied Mathematics, 2(11), 1339–1345. https://doi.org/10.4236/am.2011.211187.

Manda, A., Walker, R.B., & Khamanga, S.M.M. (2019). An artificial neural network approach to predict the effects of formulation and process variables on prednisone release from a multipartite system. Pharmaceutics, 11(3), 1–19. https://doi.org/10.3390/pharmaceutics11030109.

Mandal, S., Sivaprasad, P.V., Venugopal, S., & Murthy, K.P.N. (2009). Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Applied Soft Computing, 9(1), 237–244. https://doi.org/10.1016/j.asoc.2008.03.016.

McDowell, D.L., Panchal, J.H., Choi, H.-J., Seepersad, C.C., Allen, J.K., & Mistree, F. (2010). Integrated Design of Multiscale, Multifunctional Materials and Products. Elsevier.

Michalewicz, Z., & Fogel, D.B. (2004). How to Solve It: Modern Heuristics (2 ed.). Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07807-5.

Moayeri S.R., Khalili, M., & Nazari, M. (2016). A hybrid method to predict success of dental implants. International Journal of Advanced Computer Science and Applications, 7(5), 3–8. https://doi.org/10.14569/ijacsa.2016.070501.

Mueller, T., Kusne, A.G., & Ramprasad, R. (2016). Machine learning in materials science: recent progress and emerging applications. Reviews in Computational Chemistry, 29, 186–273. https://doi.org/10.1002/9781119148739.ch4.

Mukherjee, M., & Singh, S.B. (2009). Artificial neural network: some applications in physical metallurgy of steels. Materials and Manufacturing Processes, 24(2), 198–208. https://doi.org/10.1080/10426910802612304.

Muñiz Castro, B., Elbadawi, M., Ong, J.J., Pollard, T., Song, Z., Gaisford, S., Pérez, G., Basit, A.W., Cabalar, P., & Goyanes, A. (2021). Machine learning predicts 3D printing performance of over 900 drug delivery systems. Journal of Controlled Release, 337, 530–545. https://doi.org/10.1016/j.jconrel.2021.07.046.

Murphy, M., Killen, C., Burnham, R., Sarvari, F., Wu, K., & Brown, N. (2021). Artificial intelligence accurately identifies total hip arthroplasty implants: a tool for revision surgery. HIP International, 32(6), 766–770. https://doi.org/10.1177/1120700020987526.

Narayana, P.L., Maurya, A.K., Wang, X.-S., Harsha, M.R., Srikanth, O., Alnuaim, A.A., Hatamleh, W.A., Hatamleh, A.A., Cho, K.K., Paturi, U.M.R., & Reddy, N.S. (2021). Artificial neural networks modeling for lead removal from aqueous solutions using iron oxide nanocomposites from bio-waste mass. Environmental Research, 199, 111370. https://doi.org/10.1016/j.envres.2021.111370.

Nazari, M., Babaei, N., & Nazari, M. (2021). Nonlinear SDRE based adaptive fuzzy control approach for age-specific drug delivery in mixed chemotherapy and immunotherapy. Biomedical Signal Processing and Control, 68, 102687. https://doi.org/10.1016/j.bspc.2021.102687.

Nighojkar, A., Zimmermann, K., Ateia, M., Barbeau, B., Mohseni, M., Krishnamurthy, S., Dixit, F., & Kandasubramanian, B. (2022). Application of neural network in metal adsorption using biomaterials (BMs): a review. Environmental Science: Advances. https://doi.org/10.1039/d2va00200k.

Nilsson, N.J. (2005). Introduction to Machine Learning – an Early Draft of a Proposed Textbook. https://ai.stanford.edu/~nilsson/MLBOOK.pdf.

Noori Banu, P.S., & Devaki Rani, S. (2018). Artificial neural network based optimization of prerequisite properties for the design of biocompatible titanium alloys. Computational Materials Science, 149, 259–266. https://doi.org/10.1016/j.commatsci.2018.03.039.

Olson, G.B. (1997). Computational design of hierarchically structured materials. Science, 277(5330), 1237–1242. https://doi.org/10.1126/science.277.5330.1237.

Olson, G.B. (2000). Designing a new material world. Science, 288(5468), 993–998. https://doi.org/10.1126/science.288.5468.993.

Özkal, F.M., Cakir, F., & Sensoz, E. (2020). Schematization of cannulated screw fixations in femoral neck fractures using genetic algorithm and finite element method. Journal of Medical and Biological Engineering, 40(5), 673–687. https://doi.org/10.1007/s40846-020-00528-5.

Pablo, J.J., de, Jones, B., Kovacs, C.L., Ozolins, V., & Ramirez, A.P. (2014). The Materials Genome Initiative, the interplay of experiment, theory and computation. Current Opinion in Solid State and Materials Science, 18(2), 99–117. https://doi.org/10.1016/j.cossms.2014.02.003.

Pablo, J.J., de, Jackson, N.E., Webb, M.A., Chen, L.-Q., Moore, J.E., Morgan, D., Jacobs, R., Pollock, T., Schlom, D.G., Toberer, E.S., Analytis, J., Dabo, I., DeLongchamp, D.M., Fiete, G.A., Grason, G.M., Hautier, G., Mo, Y., Rajan, K., Reed, E.J., Rodriguez, E., Stevanovic, V., Suntivich, J., Thornton, K., & Zhao, J.-Ch. (2019). New frontiers for the materials genome initiative. npj Computational Materials, 5(1), 41. https://doi.org/10.1038/s41524-019-0173-4.

Parisi, L. (2014). Neural networks for distinguishing the performance of two hip joint implants on the basis of hip implant side and ground reaction force. International Journal of Medical, Health, Pharmaceutical and Biomedical Engineering, 8(10), 731–735. https://doi.org/10.13140/2.1.4563.6166.

Park, J.B., & Bronzino, J.D. (2003). Biomaterials: Principles and Applications. CRC Press.

Paskiabi, F.A., Mirzaei, E., Amani, A., Shokrgozar, M.A., Saber, R., & Faridi-Majidi, R. (2015). Optimizing parameters on
alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach. International Journal of Biological Macromolecules, 81, 1089–1097. https://doi.org/10.1016/j.ijbiomac.2014.10.040.

Paz, R., & Monzón, M.D. (2019). Optimization methodology for the material assignation in bioprinted scaffolds to achieve the desired stiffness over time. International Journal for Numerical Methods in Biomedical Engineering, 35(10), 1–17. https://doi.org/10.1002/cnm.3248.

Pettersson, F., Chakraborti, N., & Saxén, H. (2007). A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Applied Soft Computing, 7(1), 387–397. https://doi.org/10.1016/j.asoc.2005.09.001.

Prajapati, D.K., & Tiwari, M. (2017). Use of artificial neural network (ANN) to determining surface parameters, friction and wear during pin-on-disc tribotesting. Key Engineering Materials, 739, 87–95. https://doi.org/10.4028/www.scientific.net/kem.739.87.

Prakash, C., Kansal, H.K., Pabla, B.S., & Puri, S. (2016). To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-dominated Sorting Genetic Algorithm-II. 2015 2nd International Conference on Recent Advances in Engineering and Computational Sciences, RAECS 2015. https://doi.org/10.1109/RAECS.2015.7453288.

Quan, G.-z., Pu, S.-a., Zhan, Z.-y., Zou, Z.-y., Liu, Y-y., & Xia, Y.-f. (2015). Modelling of the hot flow behaviors for Ti-13Nb-13Zr alloy by BP-ANN model and its application. International Journal of Precision Engineering and Manufacturing, 16(10), 2129–2137. https://doi.org/10.1007/s12541-015-0275-y.

Raabe, D. (1998). Computational Materials Science: The simulation of materials and microstructures and properties.

Wiley-VCH. Rafienia, M., Amiri, M., Janmaleki, M., & Sadeghian, A. (2010). Application of artificial neural networks in controlled drug delivery systems. Applied Artificial Intelligence, 24(8), 807–820. https://doi.org/10.1080/08839514.2010.508606.

Rajan, K. (2005). Materials informatics. Materials Today, 8(10), 38–45. https://doi.org/10.1016/S1369-7021(05)71123-8.

Ratner, B.D., & Hoffman, A.S., Shoen, F.J., & Lemons, J.E. (Eds.) (1996). Biomaterials Science: An Introduction to Materials in Medicine. Academic Press.

Reddy, B.S., In, K.H., Panigrahi, B.B., Paturi, U.M.R., Cho, K.K., & Reddy, N.S. (2021). Modeling tensile strength and suture retention of polycaprolactone electrospun nanofibrous scaffolds by artificial neural networks. Materials Today Communications,26, 102115. https://doi.org/10.1016/j.mtcomm.2021.102115.

Rezende, R., Rezende, M., Bártolo, P., Mendes, A., & Filho, R.M. (2009). Optimization of scaffolds in alginate for biofabrication by genetic algorithms. In R.M. de Brito Alves, C.A.O. do Nascimento, E. Chalbaud Biscaia Jr. (Eds.), 10th International Symposium on Process Systems Engineering: Part A. Elsevier. https://doi.org/10.1016/S1570-7946(09)70713-8.

Rouhollahi, A., Ilegbusi, O., & Foroosh, H. (2021). Segmentation and pore structure estimation in SEM images of tissue engineering scaffolds using genetic algorithm. Annals of Biomedical Engineering, 49(3), 1033–1045. https://doi.org/10.1007/s10439-020-02638-2.

Roy, S., & Chakraborti, N. (2022). Novel strategies for data-driven evolutionary optimization. In P. Tuovinen, T. Periaux, J. Neittaanmäki (Eds.), Computational Sciences and Artificial Intelligence in Industry. New Digital Technologies for Solving Future Societal and Economical Challenges (pp. 11–25). Springer Cham. https://doi.org/10.1007/978-3-030-70787-3_2.

Roy, S., Dey, S., Khutia, N., Roy Chowdhury, A., & Datta, S. (2018). Design of patient specific dental implant using FE analysis and computational intelligence techniques. Applied Soft Computing, 65, 272–279. https://doi.org/10.1016/j.asoc.2018.01.025.

Roy, S., Saini, B.S., Chakrabarti, D., & Chakraborti, N. (2020). Mechanical properties of micro-alloyed steels studied using a evolutionary deep neural network. Materials and Manufacturing Processes, 35(6), 611–624. https://doi.org/10.1080/10426914.2019.1660786.

Russell, S., & Norvig, P. (2021). Artificial Intelligence. A Modern Approach (4 Ed.). Pearson.

Russo, G., Reche, P., Pennisi, M., & Pappalardo, F. (2020). The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opinion on Drug Discovery, 15(11), 1267–1281. https://doi.org/10.1080/17460441.2020.1791076.

Sadollah, A., & Bahreininejad, A. (2011). Optimum gradient material for a functionally graded dental implant using metaheuristicalgorithms. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1384–1395. https://doi.org/10.1016/j.jmbbm.2011.05.009.

Sai, T., Pathak, V.K., & Srivastava, A.K. (2020). Modeling and optimization of fused deposition modeling (FDM) process through printing PLA implants using adaptive neuro-fuzzy inference system (ANFIS) model and whale optimization algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(12), 1–19. https://doi.org/10.1007/s40430-020-02699-3.

Sanghvi, N., Vora, D., Charaya, E., Patel, J., & Sharma, S. (2021). An approach for material selection for bone staple (an orthopaedic implant) using GRA and Fuzzy logic. Materials Today: Proceedings, 44(1), 1300–1306. https://doi.org/10.1016/j.matpr.2020.11.331.

Schmidt, J., Marques, M.R.G., Botti, S., & Marques, M.A.L. (2019). Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials, 5(1), 83. https://doi.org/10.1038/s41524-019-0221-0.

Semnani, D. (2014). A novel model of optimum nanofiber distribution in nanofiber scaffold structure by genetic algorithm method. Journal of Experimental Nanoscience, 9(9), 966–981. https://doi.org/10.1080/17458080.2012.752583.

Shabbir, J., & Anwer, T. (2018). Artificial intelligence and its role in near future. Arxiv. https://doi.org/10.48550/arXiv.1804.01396.

Shalev-Shwartz, S., & Ben-David, S. (2013). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press. https://doi.org/10.1017/CBO9781107298019.

Shera, S.S., Sahu, S., & Banik, R.M. (2018). Preparation of drug eluting natural composite scaffold using response surface methodology and artificial neural network approach. Tissue Engineering and Regenerative Medicine, 15(2), 131–143. https://doi.org/10.1007/s13770-017-0100-z.

Sidhu, S.S., Singh, H., & Gepreel, M.A.H. (2021). A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Materials Science and Engineering: C, 121, 111661. https://doi.org/10.1016/j.msec.2020.111661.

Sudhakar, K.V., & Haque, M.E. (2013). Artificial neural network model: Prediction of mechanical properties in beta-titanium biomaterial. Applied Mechanics and Materials, 367, 40–44. https://doi.org/10.4028/www.scientific.net/AMM.367.40.

Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier Science.

Suh, C., Rajan, K., Vogel, B.M., Narasimhan, B., & Mallapragada, S.K. (2006). Chapter 5. Informatics methods for combinatorial materials science. In B. Narasimhan, S.K. Mallapragada, M.D. Porter (Eds.), Combinatorial Materials Science (pp. 109–119). John Wiley & Sons. https://doi.org/10.1002/9780470140475.ch5.

Sukegawa, S., Yoshii, K., Hara, T., Yamashita, K., Nakano, K., Yamamoto, N., Nagatsuka, H., & Furuki, Y. (2020). Deep neural networks for dental implant system classification. Biomolecules, 10(7), 984. https://doi.org/10.3390/biom10070984.

Sultana, N., Sikdar (Dey), S., Chattopadhyay, P. P., & Datta, S. (2014). Informatics based design of prosthetic Ti alloys. Materials Technology, 29(sup1, Part B1), B69–B75. https://doi.org/10.1179/1753555713y.0000000103.

Sundman, B., Dupin, N., & Hallstedt, B. (2021). Algorithms useful for calculating multi-component equilibria, phase diagrams and other kinds of diagrams. Calphad, 75, 102330. https://doi.org/10.1016/j.calphad.2021.102330.

Szarek, A., Korytkowski, M., Rutkowski, L., Scherer, R., & Szyprowski, J. (2012). Application of neural networks in assessing changes around implant after total hip arthroplasty. In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (Eds.), International Conference on Artificial Intelligence and Soft Computing. ICAISC 2012: Artificial Intelligence and Soft Computing (pp. 335–340). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29350-4_40.

Tao, W.M., & Zhang, M. (2005). A genetic algorithm-based area coverage approach for controlled drug delivery using microrobots. Nanomedicine: Nanotechnology, Biology, and Medicine, 1(1), 91–100. https://doi.org/10.1016/j.nano.2004.11.006.

Thomas, K.A., Dey, S., Sultana, N., Sarkar, K., & Datta, S. (2020). Design of Ti composite with bioactive surface for dental implant. Materials and Manufacturing Processes, 35(6), 643–651. https://doi.org/10.1080/10426914.2020.1711927.

Vasilevich, A., Carlier, A., Winkler, D.A., Singh, S., & Boer, J., de (2020). Evolutionary design of optimal surface topographies for biomaterials. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-78777-2.

Vatankhah, E., Semnani, D., Prabhakaran, M. P., Tadayon, M., Razavi, S., & Ramakrishna, S. (2014). Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomaterialia, 10(2), 709–721. https://doi.org/10.1016/j.actbio.2013.09.015.

Villaseñor-Cavazos, F.J., Torres-Valladares, D., & Lozano, O. (2022). Modeling and optimization of nanovector drug delivery systems: exploring the most efficient algorithms. Journal of Nanoparticle Research, 24(6), 1–19. https://doi.org/10.1007/s11051-022-05499-z.

Vinoth, A., & Datta, S. (2020a). Optimization of mechanical characteristics of UHMWPE composites using computational intelligence. In R. Prakash, R. Suresh Kumar, A. Nagesha, G. Sasikala, A. Bhaduri (Eds.), Structural Integrity Assessment. Proceedings of ICONS 2018 (pp. 211–220). Springer Singapore. https://doi.org/10.1007/978-981-13-8767-8_17.

Vinoth, A., & Datta, S. (2020b). Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach. Journal of Composite Materials, 54(2), 179–192. https://doi.org/10.1177/0021998319859924.

Vinoth, A., Dey, S., & Datta, S. (2021a). Designing UHMWPE hybrid composites using machine learning and metaheuristic algorithms. Composite Structures, 267, 113898. https://doi.org/10.1016/j.compstruct.2021.113898.

Vinoth, A., Nirmal, K. N., Khedar, R., & Datta, S. (2021b). Optimizing the tribological properties of UHMWPE nanocomposites – an artificial intelligence based approach. In E. Akinlabi, P. Ramkumar, M. Selvaraj (Eds.), Trends in Mechanical and Biomedical Design. Select Proceedings of ICMechD 2019 (pp. 831–843) Springer Singapore. https://doi.org/10.1007/978-981-15-4488-0_70.

Vu, G.T.T., Phan, N.T., Nguyen, H.T., Nguyen, H.C., Hai Tran, Y.T., Pham, T.B., Nguyen, L.T., & Nguyen, H.D. (2020). Application of the artificial neural network to optimize the formulation of self-nanoemulsifying drug delivery system containing rosuvastatin. Journal of Applied Pharmaceutical Science, 10(9), 1–11. https://doi.org/10.7324/JAPS.2020.10901.

Williams, D.F. (1999). The Williams Dictionary of Biomaterials. Liverpool University Press. https://doi.org/10.5949/UPO9781846314438.

Willumeit, R., Feyerabend, F., & Huber, N. (2013). Magnesium degradation as determined by artificial neural networks. Acta Biomaterialia, 9(10), 8722–8729. https://doi.org/10.1016/j.actbio.2013.02.042.

Wu, C.-T., Chang, H.-T., Wu, C.-Y., Chen, S.-W., Huang, S.-Y., Huang, M., Pan, Y.-T., Bradbury, P., Chou, J., & Yen, H.-W. (2020). Machine learning recommends affordable new Ti alloy with bone-like modulus. Materials Today, 34, 41–50. https://doi.org/10.1016/j.mattod.2019.08.008.

Wu, C.-T., Lin, P.-H., Huang, S.-Y., Tseng, Y.-J., Chang, H.-T., Li, S.-Y., & Yen, H.-W. (2022). Revisiting alloy design of low-modulus biomedical β-Ti alloys using an artificial neural network. Materialia, 21, 101313. https://doi.org/10.1016/j.mtla.2021.101313.

Yaghoubzadeh-Bavandpour, A., Bozorg-Haddad, O., Zolghadr-Asli, B., & Singh, V.P. (2022). Computational intelligence: an introduction. In O. Bozorg-Haddad, B. Zolghadr-Asli (Eds.), Computational Intelligence for Water and Environmental Sciences (pp. 411–427). Springer Singapore. https://doi.org/10.1007/978-981-19-2519-1_19.

Yang, F., Li, Z., Wang, Q., Jiang, B., Yan, B., Zhang, P., Xu, W., Dong, C., & Liaw, P.K. (2020). Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus. npj Computational Materials, 6(1), 101. https://doi.org/10.1038/s41524-020-00372-w.

Yaszemski, M.J., Trantolo, D.J., Lewandrowski, K.-U., Hasirci, V., Altobelli, D.E., & Wise, D.L. (Eds.) (2004). Biomaterials in Orthopedics. Marcel Dekker.

Yi Wang, W., Li, J., Liu, W., & Liu, Z.-K. (2019). Integrated computational materials engineering for advanced materials: A brief review. Computational Materials Science, 158, 42–48. https://doi.org/10.1016/j.commatsci.2018.11.001.

You, W.S., Casebier, J., Mandich, J., & Balasubramanian, R. (2021). Genetic algorithm-based optimization for the geometric design of a novel orthopedic implant. IEEE Transactions on Biomedical Engineering, 68(12), 3620–3627. https://doi.org/10.1109/TBME.2021.3080226.

Younesi, M., Bahrololoom, M.E., & Ahmadzadeh, M. (2010). Prediction of wear behaviors of nickel free stainless
steel-hydroxyapatite bio-composites using artificial neural network. Computational Materials Science, 47(3), 645–654. https://doi.org/10.1016/j.commatsci.2009.09.019.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.

Zadeh, L.A. (1988). Fuzzy logic. Computer, 21(4), 83–93. https://doi.org/10.1109/2.53.

Zaw, K., Liu, G.R., Deng, B., & Tan, K.B.C. (2009). Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network. Journal of Biomechanics, 42(5), 634–641. https://doi.org/10.1016/j.jbiomech.2008.12.001.

Zedeh, L.A. (1989). Knowledge representation in fuzzy logic. IEEE Transactions on Knowledge and Data Engineering, 1(1), 89–100. https://doi.org/10.1109/69.43406.

Zheng, S., Xiong, J., Wang, L., Zhai, D., Xu, Y., & Lin, F. (2021). e-Graphene: A computational platform for the prediction of graphene-based drug delivery system by quantum genetic algorithm and cascade protocol. Frontiers in Chemistry, 9, 1–15. https://doi.org/10.3389/fchem.2021.664355.

Zhou, W., Chen, F., Zong, Y., Zhao, D., Jie, B., Wang, Z., Huang, C., & Ng, E.Y.K. (2019). Automatic detection approach for bioresorbable vascular scaffolds using a u-shaped convolutional neural network. IEEE Access, 7, 94424–94430.
https://doi.org/10.1109/ACCESS.2019.2926523.