The acoustic emission (AE) controlling method of the electric sheet blanking process – a comparative study of selected data mining methods

The acoustic emission (AE) controlling method of the electric sheet blanking process – a comparative study of selected data mining methods

Andrzej Kochański, Piotr Czyżewski, Leszek Moszczyński

Warsaw University of Technology, Institute of Manufacturing Technologies, Warsaw, Poland.

DOI:

https://doi.org/10.7494/cmms.2022.4.0785

Abstract:

The article presents an experimental stand to assess the state of punch in the process of sheet blanking. Blanking trials were carried out on an eccentric press. During all the trials, there were recorded signals of acoustic emission (AE) that accompanied the process of blanking. For the recorded AE signals, the methodology of data preparation and analysis was presented. On that basis, the results of the assessment of the state of the punch were presented, and they employed five methods of visualization: Andrews curves, Principal Components Analysis, Linear Discriminant Analysis, a modified method of Stochastic Neighbor Embedding and Sammon Mapping. The aim of the work was to assess the possibility of using visualization methods to predict the condition of the tool on the basis of acoustic emission signals in processes carried out in extremely short times.

Cite as:

Kochański, A., Czyżewski, P., & Moszczyński, L. (2022). The Acoustic Emission (AE) controlling method of the electric sheet blanking process – a comparative study of selected Data Mining methods. Computer Methods in Materials Science, 22(4), 189–200. https://doi.org/10.7494/cmms.2022.4.0785

Article (PDF):

Keywords:

Acoustic emission, Data acquisition, Data preparation methods, Visualization methods, Process duration, Process speed, Punching, Manufacturing, Andrews curves, PCA, LDA, tSNE, Sammon Mapping

References:

Andrews, D.F. (1972). Plots of high dimensional data. Biometrics, 28(1), 125–136.

Barschdorff, D., & Haupt, H. (2000). Monitoring of metal forming by acoustic emission. XVI IMEKO World Congress. Measurement – Supports Science – Improves Technology – Protects Environment… and Provides Employment – Now and in the Future. Vienna, AUSTRIA, 2000, September 25–28. https://www.imeko.org/publications/wc-2000/IMEKO-WC-2000-QM-P549.pdf.

Bejger, A. (2008). Analiza pasm częstotliwości sygnału emisji akustycznej zależnych od zjawisk zachodzących we wtryskiwaczu. Zeszyty Naukowe. Akademia Morska w Szczecinie, 14(86), 5–8.

Błażejewska, M. (2012). Monitorowanie narzędzi skrawających. Tematyczne zestawienie dokumentacyjne. Instytut Zaawansowanych Technologii Wytwarzania. https://docplayer.pl/15735359-Monitorowanie-narzedzi-skrawajacych.html.

Brambilla, L., Chalançon, B., Roda Buch, A., Cornet, E., Rapp, G., & Mischler, S. (2021). Acoustic emission techniques for the detection of simulated failures in historical vehicles engines. The European Physical Journal Plus, 136(6), 1–13. https://doi.org/10.1140/EPJP/S13360-021-01611-9.

El-Galy, I., & Behrens, B.-A. (2010). Online monitoring of hot die forging processes using acoustic emission (part-I). Journal of Acoustic Emission, 26, 208–219.

Fillatreau, P., Bernard, F.X., Aztiria, A., Argandona, E.S., de, García, C., Arana, N., Izaguirre, A. (2008). Sheet metal forming global control system based on artificial vision system and force-acoustic sensors. Robotics and Computer-Integrated Manufacturing, 24(6), 780–787. https://doi.org/10.1016/j.rcim.2008.03.016.

Grzegorzewski, P., & Kochanski, A. (2019). Data preprocessing in industrial manufacturing. In P. Grzegorzewski, A. Kochanski, J. Kacprzyk (Eds.), Soft Modeling in Industrial Manufacturing (pp. 27–41). Springer Cham. “Studies in Systems, Decision and Control”, vol. 183. https://doi.org/10.1007/978-3-030-03201-2_3.

Hawkins, D.M. (1980). Identification of Outliers. Springer Dordrecht.

Jakubczyk, E., Gondek, E., & Tryzno, E. (2017). Application of novel acoustic measurement techniques for texture analysis of co-extruded snacks. LWT, 75, 582–589. https://doi.org/10.1016/j.lwt.2016.10.013.

Jemielniak, K., Bombiński, S., & Aristimuno, P.X.X. (2008). Tool condition monitoring in micromilling based on hierarchical integration of signal measures. CIRP Annals, 57(1), 121–124. https://doi.org/10.1016/j.cirp.2008.03.053.

Jemielniak, K., Kossakowska, J., & Urbański, T. (2010). Zastosowanie transformaty falkowej sygnałów sił skrawania i emisji akustycznej do monitorowania stanu narzędzia skrawającego podczas toczenia zgrubnego Inconelu 625. In B. Kruszyński (Ed.), Obróbka skrawaniem (4: Współczesne problemy, pp. 237–244). Politechnika Łódzka.

Kossakowski, P. (2013). Zastosowanie emisji akustycznej w ocenie pękania drewna. Inżynieria i Budownictwo, 69(2), 89–93.

Li, S., Zhang, L., Guo, P., Zhang, P., Wang, C., Sun, W., & Han, S. (2021). Characteristic analysis of acoustic emission monitoring parameters for crack propagation in UHPC-NC composite beam under bending test. Construction and Building Materials, 278, 122401. https://doi.org/10.1016/j.conbuildmat.2021.122401.

Marzec, A., Borowiec, M., & Lewicki, P.P. (2005). Badanie tekstury pieczywa chrupkiego metodą emisji akustycznej. Żywność, 4(45)Supl., 75–85.

Miller, R.K., Hill, E.K., Moore, P.O. (Eds.) (2005). Nondestructive Testing Handbook (vol. 6: Acoustic emission testing). American Society for Nondestructive Testing.

Moszczyński, L., & Czyżewski, P. (2008). Indykacja stanów katastroficznego i naturalnego zużycia narzędzi do obróbki plastycznej za pomocą wysokoczęstotliwościowej emisji akustycznej wspomaganej zaawansowanymi metodami numerycznymi. Raport Projektu Badawczego PBN.

Moszczyński, L., Osowski, S., Markiewicz, T., & Czyzewski, P. (2008). Classification of signals in the process of
metal sheet shearing. Przeglad Elektrotechniczny, 84(5), 293–296. http://www.scopus.com/inward/record.url?eid=2-s2.0-43649101116&partnerID=MN8TOARS.

Nakamura, M., Okada, H., Matsui, K., & Kitayama, M. (1980). A study on punchability and weldability of electrical steel sheets with the insulating coating. Tetsu-to-Hagane, 66(7), 1000–1009. https://doi.org/10.2355/tetsutohagane1955.66.7_1000.

Patra, K. (2011). Acoustic Emission based Tool Condition Monitoring System in Drilling. In Proceedings of the World Congress on Engineering 2011. WCE 2011, July 6–8, 2011, London, U.K. (vol III). http://www.iaeng.org/publication/WCE2011/WCE2011_pp2126-2130.pdf.

Physical Acoustic, C. (2002). Mi-Tra System User’s Manual. Mistras Group Inc.

Ranachowski, Z. (2010). Emisja akustyczna w badaniach żywności. 57. Otwarte Seminarium z Akustyki. http://www.ippt.pan.pl/Repository/o142.pdf.

Raunmiagi, Z. (2011). Ocena stanu stożkowej powierzchni iglicy i gniazda rozpylaczy paliwa silników okrętowych z wykorzystaniem emisji akustycznej [Doctoral dissertation]. http://www.ippt.pan.pl/repository/doktoraty/open/2011raumiagi_z_doktorat.pdf

Skåre, T., Thilderkvist, P., & Ståhl, J.-E. (1998). Monitoring of friction processes by the means of acoustic emission measurements – deep drawing of sheet metal. Journal of Materials Processing Technology, 80–81, 263–272. https://doi.org/10.1016/S0924-0136(98)00130-7.

Świt, G., Goszczyńska, B., Trąmpczyński, W., & Krampikowska, A. (2013). Zastosowanie metody emisji akustycznej do oceny stanu technicznego mostu stalowego. Inżynieria i Budownictwo, 69(10), 559–562.

Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals, 59(2), 717–739. https://doi.org/10.1016/j.cirp.2010.05.010.

Twardowski, P., Tabaszewski, M., Wiciak-Pikuła, M., & Felusiak-Czyryca, A. (2021). Identification of tool wear using
acoustic emission signal and machine learning methods. Precision Engineering, 72, 738–744. https://doi.org/10.1016/j.precisioneng.2021.07.019.

Yamaguchi, T., Higuchi, M., Shimada, S., & Kaneeda, T. (2007). Tool life monitoring during the diamond turning of electroless Ni-P. Precision Engineering, 31(3), 196–201. https://doi.org/10.1016/j.precisioneng.2006.07.002.