Multiobjective optimiaztion of microstructure parameters in a thermoelastic porous material by means of differential evolution and elements of game theory

Multiobjective optimiaztion of microstructure parameters in a thermoelastic porous material by means of differential evolution and elements of game theory

Adam Długosz, Tomasz Schlieter

Silesian University of Technology, Department of Computational Mechanics and Engineering, Gliwice, Poland.

DOI:

https://doi.org/10.7494/cmms.2022.3.0784

Abstract:

The paper is devoted to the optimization of the microstructure parameters of a porous medium under thermo-mechanical loading. Four different criteria related to the properties of the porous material have been proposed and numerically implemented. To solve a multiobjective problem, a novel method based on the coupling of differential evolution and elements of game theory is used. The proposed algorithm features an appropriate balance between exploration and exploitation of objective space, which is necessary for the successful optimization of these types of tasks with the use of numerical simulations. The model of the thermo-elastic porous material is composed of two-scale direct analysis based on a numerical homogenization. Direct thermoelastic analysis with representative volume element (RVE) and finite element method (FEM) is performed. Numerical example of the optimization illustrating the usefulness of the proposed method is included.

Cite as:

Długosz, A., & Schlieter, T. (2022). Multiobjective optimiaztion of microstructure parameters in a thermoelastic porous material by means of differential evolution and elements of game theory. Computer Methods in Materials Science, 22(3), 117-124. https://doi.org/10.7494/cmms.2022.3.0784

Article (PDF):

Keywords:

Multiobjective optimization, Thermoelasticity, Porous materials, Multiscale problem, Representative volume element, Differential evolution, Game theory

References:

Auriault, J.-L., Boutin, C. & Geindreau, C. (2009). Homogenization of Coupled Phenomena in Heterogenous Media. ISTE, Wiley.

Beer, G. (1983). Finite element, boundary element and coupled analysis of unbounded problems in elastostatics. International Journal for Numerical Methods in Engineering, 19(4), 567–580. https://doi.org/10.1002/nme.1620190408.

Buryachenko, V. (2007). Micromechanics of Heterogeneous Materials. Springer New York, NY. https://doi.org/10.1007/978-0-387-68485-7.

Coello Coello, C.A. (2005). Recent trends in evolutionary multiobjective optimization. In A. Abraham, L. Jain, R. Goldberg (Eds.), Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-137-7_2.

Das, S. & Suganthan, P.N. (2011). Differential evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31. https://doi.org/10.1109/TEVC.2010.2059031.

Długosz, A. (2014). Optimization in multiscale thermoelastic problems. Computer Methods in Materials Science, 14(1), 86–93.

Długosz, A. & Schlieter, T. (2016). Multiobjective optimization in two-scale thermoelastic problems for porous solids. Engineering Transactions, 64(4), 449–456.

Długosz, A. & Schlieter, T. (2018). Multiobjective optimization of 3D porous thermoelastic structures. In J. Podgórski, E. Błazik-Borowa, J. Bec, T. Burczyński, M. Kuczma, J. Latalski, J. Warmiński (Eds.), Computer Methods in Mechanics (CMM2017).

Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Lublin, Poland, 13–16 September 2017 (pp. 030007-1–030007-8). “AIP Conference Proceedings”, vol. 1922(1). https://doi.org/10.1063/1.5019041.

Fish, J. (2006). Bridging the scales in nano engineering and science. Journal of Nanoparticle Research, 8(5), 577–594. https://doi.org/10.1007/s11051-006-9090-9.

Fudenberg, D. & Tirole, J. (1991). Game Theory. The MIT Press.

MSC Software Corporation (2019). MSC.MARC. Theory and User Information (vol. A–D).

Osborne, M.J. & Rubinstein, A. (1994). A Course in Game Theory. The MIT Press.

Ptaszny, J., Hatłas, M. (2018). Evaluation of the FMBEM efficiency in the analysis of porous structures. Engineering Computations, 35(2), 843–866. https://doi.org/10.1108/EC-12-2016-0436.

Schlieter, T. (2021). Optimal Design of Mechanical Systems for Multiple Criteria by Means of Soft Computing Methods [PhD thesis], Politechnika Śląska, Gliwice.

Storn, R. & Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328.
Terada, K., Kurumatani, M., Ushida, T., Kikuchi N. (2010). A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Computational Mechanics, 46(2), 269–285. https://doi.org/10.1007/s00466-009-0400-9.

Vesterstrom, J. & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In Proceedings of the 2004 Congress on Evolutionary Computation (vol. 2, pp. 1980–1987). IEEE, https://doi.org/10.1109/CEC.2004.1331139.

Zienkiewicz, O.C., Taylor, R.L. & Zhu, J.Z. (2005). The Finite Element Method. Its Basis and Fundamentals (6th ed.). Elsevier Butterworth-Heinemann.

Zohdi, T.I. & Wriggers, P. (2005). An Introduction to Computational Micromechanics. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-32360-0.