Development and verification of the scale formation model during high temperature oxidation for S235 steel

Aleksandra Przyłucka1, Agnieszka Cebo-Rudnicka1, Marcin Rywotycki1, Joanna Augustyn-Nadzieja2, Zbigniew Malinowski1

1AGH University of Science and Technology, Department of Heat Engineering and Environment Protection, ul. Czarnowiejska 66, 30-059 Krakow, Poland.

2AGH University of Science and Technology, Department of Physical and Powder Metallurgy, Faculty of Metals Engineering and Industrial Computer Science, ul. Czarnowiejska 66, 30-059 Krakow, Poland.

DOI:

https://doi.org/10.7494/cmms.2020.4.0723

Abstract:

Every year rapid industrialization and the following urbanization fuel the global demand for steel. The use of steel products contributes to the sustainable development of society. The scale growth mechanism accompanies the high-temperature plastic working of metals and alloys. The article focuses on the thickness of the scale formed as a result of annealing steel samples in a furnace. Samples made of S235 (A283C) steel were heated at two temperatures, 1100ºC and 1200ºC, for 8 minutes. The amount of scale formed was determined on the basis of photos taken with a light microscope. The transformed equations of steel oxidation kinetics were used in the computational part. The scale thickness obtained numerically corresponded to the scale formed in real conditions. The aim of the research was to adjust the scale growth model on steel so that it gives correct results in relation to the actual thickness of the formed oxidized layer.

Cite as:

Przyłucka, A., Cebo-Rudnicka, A., Rywotycki, M., Augustyn-Nadzieja, J., & Malinowski, Z. (2020). Development and verification of the scale formation model during high temperature oxidation for S235 steel. Computer Methods in Materials Science, 20(4), 139–146. https://doi.org/10.7494/cmms.2020.4.0723

Article (PDF):

Keywords:

Scale, Numerical simulation, Model of oxidation

References:

Chen, W.C., Samarasekera, I.V., Kumar, A., & Hawbolt, E.B. (1993). Mathematical modelling of heat flow and deformation during rough rolling. Ironmaking and Steelmaking, 20, 113–125.

Dobrzański, L.A., & Dobrzańska-Danikiewicz, A.D. (2011). Obróbka powierzchni materiałów inżynierskich. Open Access Library, 5.

Farahat, R., Eissa, M., Megahed, G., & Baraka, A. (2010). Reduction of mill scale generated by steel processing. Steel Grips, 8, 88–92.

Hadała, B. (2013). Implementation of the heat balance in the finite element solution to the temperature field of the plastically deformed material. International Journal of Thermal Sciences, 71, 172–181. https://doi.org/10.1016/j.ijthermalsci.2013.04.012.

Hosemann, P., Dickerson, R., Dickerson, P., Li, N., & Maloy, S.A. (2013). Transmission electron microscopy (TEM) on oxide layers formed on D9 stainless steel in lead bismuth eutectic (LBE). Corrosion Science, 66, 196–202. https://doi.org/10.1016/j.corsci.2012.09.019.

Jagadeeswara Rao, Ch., Ningshen, S., & Philip, J. (2020). Atmospheric air oxidation of 9Cr-Mo steel: Depth profiling of oxide layers using glow discharge optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 172, https://doi.org/10.1016/j.sab.2020.105973.

Mrowec, S. (1982). Kinetyka i mechanizm utleniania metali. Wydawnictwo “Śląsk”.

Mrowec, S., & Werber, T. (1975). Korozja gazowa metali. Wydawnictwo “Śląsk”.

Opel’, L.I., Vashchenko, A.I., Klimushko, K., & Shul’ts, L.A. (1974). Issledovaniye okisleniya metalla posle nagrevav pechi. Chernaya Metallurgiya, 5, 177–179 [Опель, Л.И., Ващенко, А.И., Климушко, К., & Шульц, Л.А. (1974). Исследование окисления металла после нагрева в печи. Черная Металлургия, 5, 177–179].

Pettit, F. (2011). Hot Corrosion of Metals and Alloys. Oxidation of Metals, 76, 1–21. https://doi.org/10.1007/s11085-011-9254-6.

Rostom Ali, Md., Masumi, S., & Tohmyoh, H. (2012). A time-dependent direct current potential drop method to evaluate thickness of an oxide layer formed naturally and thermally on a large surface of carbon steel. Thin Solid Films, 525, 77–83. https://doi.org/10.1016/j.tsf.2012.10.089.

Sachs, K., & Tuck, C.W. (1967). Surface Oxidation of Steel in Industrial Furnaces. In Reheating for Hot Working – Proceedings of the Conference at the Imperial College of Science and Technology, 1–17.

Surowska, B. (2002). Wybrane zagadnienia z korozji i ochrony przed korozją. Wydawnictwo Politechniki Lubelskiej.

Vashchenko, A.I., Zen’kovskiy, A.G., Lifshits, A.Ye., & Shul’ts, L. A. (1972). Okisleniye i obezuglerozhivaniye stali. Metallurgiya [Ващенко, А.И., Зеньковский, А.Г., Лифшиц, А.Е., & Шульц, Л. А. (1972). Окисление и обезуглероживание стали. Металлургия].

Xianglong, Y., Zhengyi, J., Jingwei, Z., Dongbin, W., Cunlong, Z., & Qingxue, H. (2015). Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel. Corrosion Science, 90, 140–152. https://doi.org/10.1016/j.corsci.2014.10.005.

Więcek, M., & Mróz, J. (2014). Typy zgorzelin jedno- i wielofazowych. Hutnik – Wiadomości Hutnicze, 81(10), 682–687.

World Steel Association (2020). 2020. World Steel in Figures. https://www.worldsteel.org/en/dam/jcr:f7982217-cfde-4fdc8ba0-795ed807f513/World%2520Steel%2520in%2520Figures%25202020i.pdf.