Fast model for phase transformations during cooling of pre-annealed multiphase steels

Fast model for phase transformations during cooling of pre-annealed multiphase steels

Danuta Szeliga1, Roman Kuziak2, Władysław Zalecki2, Valeriy Pidvysotskyy2, Yuling Chang3, Wolfgang Bleck3, Daniel Bachniak1, Maciej Pietrzyk1

1AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland

2Łukasiewicz Research Network, Institute for Ferrous Metallurgy, K. Miarki 12, 44-100 Gliwice, Poland

3RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany

DOI:

https://doi.org/10.7494/cmms.2019.4.0645

Abstract:

A thorough experimental and numerical analysis of phase transformations in a selected high strength steel was the general objective of the paper. Dilatometric tests were performed for a wide range of cooling rates. Two models based on a mean field approach were considered. The first was an upgrade of the Johnson-Mehl-Avrami-Kolmogorov equation. The second model was based on the Leblond equation. Both models were identified using inverse analysis of the experimental data. Simulations of various cooling schedules were performed to validate the models. Phase compositions for these cooling schedules were determined. Following this the effect of elements’ segregation during solidification of steel on the occurrence of marteniste/bainite bands was accounted for using the developed models.

Cite as:

Szeliga, D., Kuziak, R., Zalecki, W., Pidvysotskyy, V., Chang, Y., Bleck, W., Bachniak, D., & Pietrzyk, M. (2019). Fast model for phase transformations during cooling of pre-annealed multiphase steels. Computer Methods in Materials Science, 19(4), 150-161. https://doi.org/10.7494/cmms.2019.4.0645

Article (PDF):

Keywords:

CP steel, Phase transformations, Mean field models

References:

Bachniak, D., Rauch, Ł, Pietrzyk, M., Kusiak, J., 2017, Selection of the optimization method for identification of phase transformation models for steels, Materials and Manufacturing Processes, 32, 1248-1259.

Bhadeshia, H.K.D.H., 2001, Bainite in steels: transformations, microstructure and properties, 2nd ed., IOM Communications,London.

Donnay, B., Herman, J.C., Leroy, V., Lotter, U., Grossterlinden, R., 1996, Microstructure evolution of C-Mn Steels in the hot deformation process: The STRIPCAM model, Proc. 2nd Conf. Modelling of Metal Rolling Processes, eds, Beynon, J.H., Ingham, P., Teichert, H., Waterson, K., Pircher, H., London, 23-35.

Grajcar, A., Kamińska, M., Opiela, M., Skrzypczyk, P., Grzegorczyk, B., Kalinowska-Ozgowicz, E., 2012, Segregation of alloying elements in thermomechanically rolled medium-Mn multiphase steels, Journal of Achievements in Materials and Manufacturing Engineering, 55, 256-264.

Grossterlinden, R., Kawalla, R., Lotter, U., Pircher, H., 1992, Formation of pearlitic banded structures in ferritic-pearlitic steels, steel research, 63, 331-336.

Farivar, H., Richter, S., Hans, M., Schwedt, A., Prahl, U., Bleck, W., 2018, Experimental quantification of carbon gradients in martensite and its multi-scale effects in a DP steel, Materials Science and Engineering A, 718, 250-259.

Fonstein, N., 2015, Complex Phase Steels. Advanced High Strength Sheet Steels. Springer, Cham, 241-258.

Karelova, A., Krempaszky, C., Werner, E., Tsipouridis, P., Hebesberger, T., Pichler, A., 2009, Hole expansion of dualphase and complex-phase AHS steels – effect of edge conditions, Steel Research International, 80, 71-77.

Katsamas, A.I., Haidemenopoulos G.N., 2008, A semi–empirical model for the evolution of retained austenite via bainitic transformation in multiphase TRIP steels, Steel Research International, 79, 875-884.

Kuziak, R., Kawalla, R., Waengler, S., 2008, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering, 8, 103-17.

Leblond, J.B., Devaux, J., 1984, A new kinetic model for anisothermal metallurgical transformations in steel including effect of austenite grain size, Acta Metallurgica, 32, 137-146.

Maity, S.K., Kawalla, R., 2011, Ultrahigh strength steel: development of mechanical properties through controlled cooling, Chapter 13 in: Heat transfer – engineering applications, ed. Vikhrenko, V., InTech, Rijeka, Shanghai, 309-336.

Milenin, I., Pernach, M., Pietrzyk, M., 2015, Application of the control theory for modelling austenite-ferrite phase transformation in steels, Computer Methods in Materials Science, 15, 327-335.

Milenin, I., Kuziak, R., Rauch, Ł., Pietrzyk, M., 2019, Model of phase transformations in steels subject to heating-cooling thermal cycles in continuous annealing line, Canadian Metallurgical Quarterly, (in press).

Mo, C.L., Zhang, Y.T., Li, D.Z., Li, Y.Y., 2005, Microstructural banding in the center of hot rolling strip, Acta Metallurgica Sinica, 18, 664-668.

Pietrzyk, M., Kuziak, R., 2012, Modelling phase transformations in steel, in: Microstructure evolution in metal forming processes, (eds), Lin J., Balint D., Pietrzyk M., Woodhead Publishing, Oxford, 145-179.

Pietrzyk, M., Kusiak, J., Kuziak, R., Madej, Ł., Szeliga, D., Gołąb, R., 2014, Conventional and multiscale modelling of microstructure evolution during laminar cooling of DP steel strips, Metallurgical and Materials Transactions B, 46B, 497-506.

Pietrzyk, M., Madej, Ł., Rauch, Ł., Szeliga, D., 2015, Computational Materials Engineering: Achieving high accuracy and efficiency in metals processing simulations, Butterworth- Heinemann, Elsevier, Amsterdam.

Rauch, Ł., Bzowski, K., Kuziak, R., Uranga, P., Gutierrez, I., Isasti, N., Jacolot, R., Kitowski, J., Pietrzyk, M., 2019, Computer-integrated platform for automatic, flexible, and optimal multivariable design of a hot strip rolling technology using advanced multiphase steels, Metals, 9, 737; doi.org/10.3390/met9070737.

Ryde, L., Lyytinen, O., Peura, P., Titova, M., Granbom, Y.V., Hebesberger, T., 2012, Cold-rolled complex-phase (CP) steel grades with optimized bendability, stretch-flangeability and anisotropy (CP-Steels), European Commission, RFCS project report, RFSR-CT-2006-00021, Luxemburg.

Scheil, E., 1935, Anlaufzeit der Austenitumwandlung, Archiv für Eissenhüttenwesen, 12, 565-567.

Szeliga, D., Chang, Y., Bleck, W., Pietrzyk, M., 2019, Evaluation of using distribution functions for mean field modelling of multiphase steels, Procedia Manufacturing, 27, 72-77.


Thomser, C., Uthaisangsuk, V., Bleck, W., 2009, Influence of martensite distribution on the mechanical properties of dual phase steels: experiments and simulation, Steel Research International, 80, 582-587.

Vajragupta, N., Wechsuwanmanee, P., Lian, J., Sharaf, M., Münstermann, S., Ma, A., Hartmaier, A., Bleck, W., 2014, The modeling scheme to evaluate the influence of microstructure features on microcrack formation of DP-steel: The artificial microstructure model and its application to predict the strain hardening behavior, Computational Materials Science, 94, 198-213.

Wang, M., Xu, G., Zhang, Y., Wang, L., 2015, Effect of heat treatment on the banded structure of the hot rolled 30CrMo steel, in: Proc. Conf. Material Science and Engineering ICMSE, ed., Chen, P., CRC Press, Guangzhou, Guangdong, 91-94.

Weiß-Borkowski, N., Lian, J., Camberg, A., Tröster, T., Münstermann, S., Bleck, W., Gese, H., Richter, H., 2018, Forming limit curves of DP600 determined in high-speed Nakajima tests and predicted by two different strain-rate-sensitive models, AIP Conference Proceedings, 1960, 150017.