The numerical analysis of selected defects in forging processes

The numerical analysis of selected defects in forging processes

Aneta Łukaszek-Sołek, Sylwia Bednarek, Łukasz Lisiecki, Piotr Skubisz

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.

DOI:

https://doi.org/10.7494/cmms.2019.3.0636

Abstract:

High demands made by customers and the need to reduce production costs while maintaining high quality of products brings the necessity to include specialized models and criteria in the numerical analysis of forging processes. The latest approaches offered by commercial software manufacturers do not include comprehensive analysis of defects. In many cases is necessary to include user subroutines dedicated to specific forging operations. Interdisciplinary knowledge allows selection of creation of forecasting technique typical for analyzed forging process. The main purpose of the review article is to show the latest tools, their modifications and extensions for predicting defects typical for forging processes and often observed in the industrial process using FEM modelling. The authors showed that additional parameters or functions can support the conventional stress and strain parameters to extend the possibilities of interpretation, e.g. by means of postprocessor subroutines. Various forging processes, typical defects and optimized method of their forecasting were presented. The research methodology was a combination of numerical modelling, laboratory tests and analysis of industrial processes.

Cite as:

Łukaszek-Sołek, A., Bednarek, S., Lisiecki, Ł., & Skubisz, P. (2019). The numerical analysis of selected defects in forging processes. Computer Methods in Materials Science, 19(3), 89-99. https://doi.org/10.7494/cmms.2019.3.0636

Article (PDF):

Keywords:

Numerical modelling, Forging, Defects, Postprocessing subroutines

References:

Alimov, A., Zabelyan, D., Burlakov I., Korotkov I., Gladkov Y., 2018, Simulation of deformation behaviour and microstructure evolution during hot forging of TC11 titanium alloy, Proc. Conf. Superplasticity in Advanced Materials ICSAM 2018, Defect and Diffusion Forum, 385, 449-454.

Banaszek, G., Stefanik, A., Dyja, H., Berski, S., Janik, M., 2003, Modelowanie komputerowe i laboratoryjne procesu zamykania wad pochodzenia metalurgicznego we wlewkach podczas kucia swobodnego na gorąco, Rudy i Metale Nieżelazne, 10-11, 512-517 (in Polish).

Banaszek, G., Stefanik, A., 2006, Theoretical and laboratory modelling of the closure of metallurgical defects during forming of a forging, J. Mater. Process. Tech., 177, 238-242.

Bednarek, S., Krawczyk, J., Bała, P., Łukaszek-Sołek, A., 2012, Forging of 300M steel collar, Proc. Conf. Metal Forming 2012, Steel Res. Int., spec. ed., 179-182.

Biba, N., Stebunov, S., 2010, QForm3D – cost effective simulation tool for metal forming technology, Proc. Conf. the Korean Society for Technology of Plasticity Conference, 15th Forging Symposium, 77-80.

Biba, N.V., Stebunov, S.A., Ovchinnikov, A.V., Shmelev, V. P., 2006, Experience in simulation for predicting the structure of die forgings, Met. Sci. Heat Treat., 48, 7-8.

Biba, N., Stebounov, S., Lishiny, A., 2001, Cost effective implementation of forging simulation, J. Mater. Process. Tech., 113, 1, 34-39.

Bjorkman, G. S., Ammerman, D., Snow, S., Morton, D. K., 2010, Strain-based acceptance criteria for spent fuel storage and transportation containments, U.S. NRC, 1-8.

Bramley, A.N., Mynors, D.J., 2000, The use of forging simulation tools, Mater. Des., 21, 279-286.

Chen, M.S., Lin, Y.C., 2013, Numerical simulation and experimental verification of void evolution inside large forgings during hot working, Int. J. Plasticity, 49, 53-70.

Chyła, P., Kowalski, J., Bednarek, S., Łukaszek-Sołek, A., Sińczak, J., 2012, Zamykanie wewnętrznych nieciągłości w procesie kucia wlewków, przeznaczonych na duże odkuwki swobodnie kute, Hutnik Wiadomości Hutnicze, 79, 4, 219-224 (in Polish).

Ellinghausen, T., 2013, The revolution of simulation software development, FORGING, 16-18.

Gartvig, A., 2017, New method of material flow defects prediction at metal forming simulation, presented at QForm Forum, Berlin, http://qform3d.com/files_com/docs/Program_QForm%20Forum.Berlin_6.09.2017.pdf.

Gao, P.F., Fei, M.Y., Yan, X.G., Wang, S.B., Li, Y.K., Xing, L., Wei, K., Zhan, M., Zhou, Z.T., Keyim, Z., 2019, Prediction of the folding defect in die forging: A versatile approach for three typical types of folding defects, J. Manuf. Process., 39, 181-191.

Gouveia, B.P.P.A., Rodrigues, J.M.C., Martins, P.A.F., 2000, Ductile fracture in metalworking: experimental and theoretical research, J. Mater. Process. Tech., 101, 52-63.

Gronostajski, Z., Pater, Z., Madej, L., Gontarz, A., Lisiecki, L. Metal forming, Arch. Civ. Mech. Eng., 19, 3, 898-941.

Guo, Z., Lasne, P., Saunders, N., Schillé, J.-P., 2018, Introduction of materials modelling into metal forming simulation, Proc. Conf. Metal Forming 2018, Proc. Manufacturing, 15, 372-380.

Hawryluk, M., Jakubik, J., 2016, Analysis of forging defects for selected industrial die forging processes, Eng. Fail. Anal., 59, 396-409.

Hawryluk, M., Gronostajski, Z., Kaszuba, M., Krawczyk, J., Widomski, P., Ziemba, J., Zwierzchowski, M., Janik, M., 2018, Wear mechanisms analysis of dies used in the process of hot forging a valve made of high nickel steel, Arch. Metall. Mater., 63, 4, 1963-1974.

He, H., Huang, S., Yi, Y., Guo, W., 2017, Simulation and experimental research on isothermal forging with semi-closed die and multi-stage-change speed of large AZ80 magnesium alloy support beam, J. Mater. Process. Tech., 246, 198-204.

Kakimoto, H., Arikawaa, T., Takahashib Y., Tanakac, T., Imaida, Y., 2010, Development of forging process design to close internal voids, J. Mater. Process. Tech., 210, 415-422.

Khoei, A.R., 2005, Computational Plasticity in Powder Forming Processes, Elsevier Science, San Diego, CA Lisiecki, Ł., Skubisz, P., 2016, Elaboration of ductile fracture criteria based on punching forgeability test, Computer Methods in Materials Science, 16, 1, 382-394.

Lisiecki, Ł., Skubisz, P., 2015, Analysis of the impression-die forging process of hard-to-deformation magnesium alloys with regard to fracture occurrence, Rudy i Metale Nieżelazne Recykling, 12, 664-668.

Lisiecki, Ł., Skubisz, P., Karwan, J., 2015, Prediction and investigation of fracture initiation in warm forging of martensitic stainless steel with aid of FEM simulation, Computer Methods in Materials Science, 15, 2, 346-352.

Łukaszek-Sołek, A., 2014, Effect of technical quality of thermomechanical die forging of AA2099 alloy, Arch. Metall. Mater., 59, 997-1003.

Metals Handbook: Vol. 14, Forming and Forging, 1988, 9. Ed. Metals Park (Ohio): American Soc. for Metals.

Pérez, M., 2018, Microstructural evolution of Nimonic 80a during hot forging under nonisothermal conditions of screw press, J. Mater. Process. Tech., 252, 45-57.

Petrov, M.A., Petrov, A.N. Petrov, P.A., 2016, Numerical investigation of the material behaviour during compression tests for samples with rough surfaces represented in different geometry scale factors, Key Eng. Mater., 716, 736-752.

Petrov, P, Perfilov, V, Stebunov, S., 2006, Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy A92618, J. Mater. Process. Technol., 177 (1-3), 218-23.

Rathi, M.G., Jakhade, N.A., 2014, An overview of forging processes with their defects, Int. J. Scientific and Research Publications, 4, 6, 1-6.

Saad, M., Akhtar, S., Srivastava, M., Chaurasia, J., 2018, Role of simulation in metal forming processes, ICMPC 2018, Materials Today: Proceedings, 5, 19576-19585.

Saanouni, K., 2008, On the numerical prediction of the ductile fracture in metal forming, Eng. Frac. Mech., 75, 3545-3559.

Sińczak, J., Łukaszek-Sołek, A., Skubisz, P., Bednarek, S., 2007, Impression-die forging of flange with utilization of thermomechanical treatment, Hutnik – Wiadomości Hutnicze, 74, 187-191 (in Polish).

Skripalenko, M.M., Romantsev, B. A., Bazhenov, V. E., Tran, B.H., 2019, Computer simulation of Mannesmann piercing of aluminium alloy ingots, Russ. J Non-Ferr. Met., 60, 1, 27-34.

Skubisz, P., Łukaszek-Sołek, A., Kowalski, J., Sińczak, J., 2008a, Closing the internal discontinuities of ingots in open die forging, Proc. Conf. Metal Forming 2008, Steel Res. Int., spec. issue, 79, 1, 555-562.

Skubisz, P., Łukaszek-Sołek, A., Sińczak, J., Bednarek, S., 2008b, Drop forging of HSLA steel with application of thermomechanical treatment, Arch. Civ. Mech. Eng., 8, 4, 93-102.

Skubisz, P., Krawczyk, J., Sińczak, J., 2012, Tool life enhancement in warm forging of CV joint with utilization of the divided flow method, Proc. Conf. Metal Forming 2012, Steel Res. Int., spec. issue, 235-238.

Stebunov, S., Biba, N., Vlasov, A., Maximov, A., 2011, Thermally and mechanically coupled simulation of metal forming processes, Proc. Int. Conf. Technology of Plasticity, Aachen, 171-175.

Thorat, M.L., Ligade, R.R., 2018, Review on defects in hot forging process – investigation, Int. J. Sustainable Development Research, 3, 4, 34-42.

Wojtaszek, M., Bednarek, S., 2011, Application of FEM simulation to numerical analysis of closed-die hot compacting of aluminum powder compacts, Rudy i Metale Nieżelazne, 6, 348-353.

Vlasov, A., Biba, N., Stebunov, S., 2016, Elastic-plastic thermomechanical fatigue analysis of forging dies, Key Eng. Mater., 716, 667-676.

Zhang, X., Ma, F., Ma, K., Li, X., 2012, Multi-scale analysis of void closure for heavy ingot hot forging, Mod. Appl. Sci., 6, 10, 15-25.

Zhang, L., Shen, W., Zhang, C., Xu, Q., Cui, Y., 2017, Numerical simulation of different types of voids closure in large continuous casting billet during multi-pass stretching process, Procedia Eng., 207, 532-537.