On the extrapolated VMS-POD method for incompressible flows

On the extrapolated VMS-POD method for incompressible flows

Fatma G. Eroglu1, Songul Kaya2

1Department of Mathematics, Faculty of Science, Bartın University, 74110, Bartın, Turkey.

2Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey.

DOI:

https://doi.org/10.7494/cmms.2019.2.0634

Abstract:

In this study, proper orthogonal decomposition based reduced-order modelling and variational multiscale stabilization method are utilized for the incompressible Navier-Stokes equations. Also, the difficulties resulting from nonlinearity are eliminated by using the extrapolation. Theoretical analysis of the method is presented. To check the efficiency of the proposed method, we utilize the test problem of 2D channel flow past a cylinder.

Cite as:

Eroglu, F. G., & Kaya, S. (Year). On the extrapolated VMS-POD method for incompressible flows. Computer Methods in Materials Science, 19(2), 70-77. https://doi.org/10.7494/cmms.2019.2.0634

Article (PDF):

Keywords:

Proper orthogonal decomposition, Extrapolated Crank-Nicholson, Reduced-order modelling, Projection-based variational multiscale, Finite Element Method

References:

Eroglu, F., Kaya, S., Rebholz, L., 2017, A modular regularized variational multiscale proper orthogonal decomposition for incompressible flows, Comput. Methods Appl. Mech. Engrg., 325, 350-368.

Eroglu, F., Kaya, S., Rebholz, L., 2019a, POD-ROM for the Darcy-Brinkman equations with double-diffusive convection, J. Numer. Math. , 27(3), 123-139.

Eroglu, F., Kaya, S., Rebholz, L., 2019b, Decoupled Modular Regularized VMS-POD for DarcyBrinkman Equations, IAENG International Journal of Applied Mathematics, 49(2), 134-144.

Eroglu, F., Kaya, S., 2020, An extrapolated Crank Nicholson VMS-POD method for Darcy Brinkman equations, Numerical Solutions of Realistic Nonlinear Phenomena, eds, Machado, J.A.T., Ozdemir, N., Baleanu, D., Springer (in press).

Iliescu, T., Wang, Z., 2013, Variational multiscale proper orthogonal decomposition: convectiondominated convection-diffusion-reaction equations, Mathematics of Computation, 82(283), 1357-1378.

Iliescu T., Wang Z., 2014, Variational multiscale proper orthogonal decomposition: Navier-Stokes Equations, Numer. Meth. Partial. Diff. Eqs., 30(2), 641-663.

John, V., 2004, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, Int. J. Numer. Meth. Fluids, 44, 777-788.

John, V., Kaya, S., Layton, W., 2006, A two-level variational multiscale method for convectiondominated convectiondiffusion equations, Comput. Methods Appl. Mech. Engrg., 195, 4594-4603.

John, V., Kaya, S., 2008, Finite element error analysis of a variational multiscale method for the Navier-Stokes equations, Adv. Comput. Math., 28, 43-61.

Kalugin, M.D., Strijhak, S.V., 2016, Implementation of POD and DMD methods in apache spark framework for simulation of unsteady turbulent flow in the model combustor, Proc. Conf. ECCOMAS 2016, eds, Papadrakakis, M., Papadopoulos, V., Stefanou G., Plevris, V., Crete Island, 857-864.

Kunisch, K., Volkwein, S., 2001, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90(1), 117-148.

Labovsky, A., Layton, W., Manica, C., Neda, M., Rebholz, L., 2009, The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 958-974.

Roop, J.P., 2013, A Proper-Orthogonal decomposition variational multiscale approximation method for a generalized Oseen problem, Advances in Numerical Analysis, 2013, 1-8.

San, O., Borggaard, J., 2015, Principal interval decomposition framework for POD reducedorder modeling of convective Boussinesq flows, Int. J. Numer. Meth. Fluids, 78, 37-62.

Schäfer, M., Turek, S., 1996, Benchmark computations of laminar flow around a cylinder (with support by Durst, F., Krause, E. and Rannacher, R.), Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), ed., Hirschel, E.H., Vieweg, Wiesbaden, 547-566.

Xia, L., Raghavan, B., Breitkopf, P., Zhang, W., 2013, A POD/PGD reduction approach for an efficient parameterization of data-driven material microstructure models, Computer Methods in Materials Science, 13, 219-225.