A computational fluid dynamics analysis of transport enforced by Marangoni effect during laser welding
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków.
DOI:
https://doi.org/10.7494/cmms.2017.4.0602
Abstract:
The influence of sulfur content on the welding process has been described in several papers. Sulfur as one of the surface active elements affects the surface tension of the liquid steel. In previous models of welding, initial sulfur content was the same in both welded parts. The article concerns the case where the welded materials differ in sulfur. Mutual mixing of welded materials in welding pool leads to periodic changes of driving force direction. The model permits the calculation of sulfur concentration in weld pool and weld size depending on the initial composition, laser power and welding velocity.
Cite as:
Siwek, A. (2017). A computational fluid dynamics analysis of transport enforced by Marangoni effect during laser welding. Computer Methods in Materials Science, 17(4), 186 – 194. https://doi.org/10.7494/cmms.2017.4.0602
Article (PDF):
Keywords:
CFD, Dissimilar welding, Surface active element
References:
D’Alvise L., Massoni, E., Walløe, S.J., 2002, Finite elementmodelling of the inertia friction welding process betweendissimilar materials, Journal of Materials ProcessingTechnology 125–126, 387-391.
Darwish, S.M., 2004, Analysis of weld-bonded dissimilar materials,International Journal of Adhesion & Adhesives,24, 347-354.
DebRoy, T., Bhadeshia, H.K.D.H., 2010,Friction stir welding ofdissimilar alloys – a perspective, Science and Technologyof Welding and Joining, 15(4), 266-270.
Dörfler, S.M., 2008, Advanced modeling of friction stir welding– improved material model for aluminum alloys andmodeling of different materials with different propertiesby using the level set method, Proceedings of theCOMSOL Conference, Hannover.
Ferziger, J.H., Perić, M., 2002, Computational Methods forFluid Dynamics, Springer-Verlag, Berlin.Fluent. Inc. Fluent 17.2, User’s guide, 2016.
Hann, L., Liou, F.W., 2014, Numerical investigation of theinfluence of laser beam mode on melt pool,International Journal of Heat and Mass Transfer, 47,4385-4402.
Hu, Z., He, X, Yu, G., Ge, Y., Zheng, C., Ning, W., 2012, Heatand mass transfer in laser dissimilar welding of stainlesssteel and nickel, Applied Surface Science, 258, 5914-5922.
Lienert, T.J., Burgardt, P., Harada, K.L., Forsyth, R.T., DebRoyT., 2014, Weld bead center line shift during laserwelding of austenitic stainless steels with different sulfurcontent, Scripta Materialia, 71, 37-40.
Martinsen K., Hu S.J., Carlson B.E., 2015, Joining of dissimilarmaterials, CIRP Annals – Manufacturing Technology,64, 679-699.
Meshram, S.D., Mohandas, T., Reddy, G.M., 2007,Frictionwelding of dissimilar pure metals, Journal of MaterialsProcessing Technology, 184, 330-337.
Mishra, S., Lienert, T.J., Johnson, M.Q., DebRoy, T., 2008, Anexperimental and theoretical study of gas tungsten arcwelding of stainless steel plates with different sulfurconcentrations, 56, 2133-2146.
Pardal, G., Meco, S., Ganguly, S., Williams, S., Prangnell, P.,2014, Dissimilar metal laser spot joining of steel to aluminiumin conduction mode, Internationa Journal ofAdvanced Manufacturing Technology, 73, 365-373.
Patankar, S.V., 1980, Numerical Heat Transfer, McGraw-Hill,New York.Rollin, A.F., Bentley, M.J., 1984, Weldability of nuclearcomponents – the effects of minor cast variations,Proceedings of the International Conference on theEffects of Residual, Trace and Microalloying Elementson Weldability and Weld Properties, ed. P.H.M. Hart,Cambridge, 273-280.
Sahoo, R., DebRoy, T., McNallan, M.J., 1988, Surface tensionof binary metal surface active solute systems underconditions relevant to welding metallurgy, MetallurgicalTransactions B, 19B, 483-491.
Salimi, S., Bahemmat, P., Haghpanahi, M., 2014,A 3D transientanalytical solution to the temperature field during dissimilarwelding processes, International Journal of MechanicalSciences, 79, 66-74.
Siwek, A., 2017, Laser welding simulation, http://home.agh.edu.pl/asiwek/welding, accessed: 2.06.2017.
Sun, Z., Ion, J.C., 1995, Review, Laser welding of dissimilarmetal combinations, Journal of Materials Science, 30,4205-4214.
Tinkler, M.J., Grant, I., Mizuno, G., Gluck, C., 1984, Welding304L stainless steel tubing having variable penetrationcharacteristics, Proceedings of the InternationalConference on the Effects of Residual, Trace andMicroalloying Elements on Weldability and WeldProperties, ed. P.H.M. Hart, Cambridge, 247-258.
Tomashchuk, I., Sallamand, P., Jouvard, J.M., 2013, Themodeling of dissimilar welding of immiscible materialsby using a phase field method, Applied Mathematics andComputation, 219, 7103-7114.
Touloukian, Y.S., 1970, Thermophysical properties of matter,IFI/Plenum, New York.Wei, H.L., Pal, S., Manvatkar, V., Lienert, T.J., DebRoy, T.,2015, Asymmetry in steel welds with dissimilar amountsof sulfur, Scripta Materialia, 108, 88-91.
Yao, C., Xu, B., Zhang, X., Huang, J., Fu, J., Wu, Y.,2009,Interface microstructure and mechanical propertiesof laser welding copper–steel dissimilar joint, Opticsand Lasers in Engineering, 47, 807-814.
Zacharia, T., David, S.A., Vitek, J.M., 1991, Effect ofevaporation and temperature-dependent materialproperties on weld pool development, MetallurgicalTransactions B, 22B, 233-241.
Zhao, C.X., Kwakernaak, C., Pan, Y., Richardson, I.M., Saldi,Z., Kenjeres, S., Kleijn, C.R., 2010, The effect ofoxygen on transitional Marangoni flow in laser spotwelding, Acta Materialia, 58, 6345-6357.