Parallel FEM code for simulation of laser dieless drawing process of tubes

Parallel FEM code for simulation of laser dieless drawing process of tubes

Andrij Milenin

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków.

DOI:

https://doi.org/10.7494/cmms.2017.4.0601

Abstract:

Paper is devoted to the development of FEM code for simulation of laser dieless drawing process of micro tubes made from magnesium alloy. Difficulties in the development of parameters of such technology are related to the fact that this process is based on the free forming of the workpiece. For this reason it is difficult to determine the parameters of the process allowing to receive specified tube dimensions. The proposed solution is based on the use of parallel computing. The parallel solution of the vector of problems, which was generated by the method of factorial experiment was considered. Solved tasks allow to generate acceptable window of process parameters and to determine the parameters that guarantee the dimensions of the final pipe. A numerical effectiveness of the developed code is based on the usage by all parallel processes the one matrix with addresses of non-zero elements in the stiffness matrix.

Cite as:

Milenin, A. (2017). Parallel FEM code for simulation of laser dieless drawing process of tubes. Computer Methods in Materials Science, 17(4), 178 – 185. https://doi.org/10.7494/cmms.2017.4.0601

Article (PDF):

Keywords:

Parallel computing, Dieless drawing, Metal forming, Magnesium alloys

References:

Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D.,McDonald, J., 2001, Parallel Programming in OpenMP,Morgan Kaufmann.Furushima, T., Manabe, K., 2007, Experimental and numericalstudy on deformation behavior in dieless drawing processof superplastic microtubes, Journal of MaterialsProcessing Technology, 191, 59-63.

Furushima, T., Masuda, T., Manabe, K., Alexandrov, S., 2011,Prediction of Free Surface Roughening by 2D and 3DModel Considering Material Inhomogeneity, Journal ofSolid Mechanics and Materials Engineering, 5, 12, 978-990.

Furushima, T., Imagawa, Y., Furusawa, S., Manabe, K., 2015,Development of rotary laser dieless drawing apparatusfor metal microtubes, Key Engineering Materials, 626,372-376.

Furushima, T., Imagawa, Y., Furusawa, S., Manabe, K., 2014,Deformation profile in rotary laser dieless drawing processfor metal microtubes, Procedia Engineering, 81,700-705.

Hensel, A., Spittel, T., 1979, Kraft- und Arbeitsbedarf BildsomerFormgeburgs Verfahren, VEB Deutscher Verlag furGrundstoffindustrie, Lipsk (in German).Kustra, P., Milenin, A., Płonka, B., Furushima, T., 2016, Productionprocess of biocompatible magnesium alloy tubesusing extrusion and dieless drawing processes, Journalof Materials Engineering and Performance, 25/6, 2528-2535.

Li, Y., Quick, N. R., Kar, A., 2002, Dieless laser drawing of finemetal wires, Journal of Materials Processing Technology,123, 451-458.

Milenin, A., Kustra, P., Byrska-Wójcik, D., Furushima, T.,2017, Physical and Numerical Modelling of Laser DielessDrawing Process of Tubes from Magnesium Alloy,Procedia Engineering, 207, 2352-2357.

Milenin, A., Kustra, P., 2014, Optimization of profile extrusionprocesses using the finite element method and distributedcomputing, eScience on distributed computing infrastructure:achievements of PLGrid Plus domain-specificservices and tools, eds. Bubak, M., Kitowski, J., Wiatr,K., Springer International Publishing, 378-390.

Milenin, A., Gzyl, M., Rec, T., Plonka, B., 2014, Computeraided design of wires extrusion from biocompatible Mg-Ca magnesium alloy, Archives of Metallurgy and Materials,59, 551-556.

Milenin, A., Kustra, P., Paćko M., 2010, Mathematical model ofwarm drawing of MgCa0.8 alloy accounting for ductilityof the material, Computer Methods in Materials Science,10, 69-79.

Schenk, O., Gärtner K., 2004, Solving unsymmetric sparsesystems of linear equations with PARDISO, Future GenerationComputer Systems, 20, 475-487.

Tiernan, P., Hillery, M.T., 2004, Dieless wire drawing – anexperimental and numerical analysis, Journal of MaterialsProcessing Technology, 155-156, 1178-1183.