Structure-preserving numerical scheme for a generalized area-preserving crystalline curvature flow

Structure-preserving numerical scheme for a generalized area-preserving crystalline curvature flow

Tetsuya Ishiwata1, Shigetoshi Yazaki2

1College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ka, Saitama 337-8570, Japan.

2School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kanagawa 214-8571, Japan.

DOI:

https://doi.org/10.7494/cmms.2017.2.0597

Abstract:

The presented numerical scheme preserves variational structure of a generalized area-preserving crystalline curvature flow.   The scheme is based on an iteration and a projection method. Several numerical examples will verify that the enclosed area is preserved in numerical computation with high accuracy in the sense of double precision. Numerical computations realize theoretical convexification results starting from almost convex polygon, and are extended to a general setting starting from nonconvex polygon. 

Cite as:

Ishiwata, T., Yazaki, S. (2017). Structure-preserving numerical scheme for a generalized area-preserving crystalline curvature flow. Computer Methods in Materials Science, 17(2), 122 – 135. https://doi.org/10.7494/cmms.2017.2.0597

Article (PDF):

Keywords:

Structure-preserving, Area-preserving crystalline curvature flow, Iteration, Convexification, Negative crystal, Accurate numerical compuatation

References:

Angenent, S., Gurtin, M. E., 1989, Multiphase thermo- mechanicswith interfacial structure, 2. Evolution of an isothermalinterface, Arch. Rational Mech. Anal., 108, 323-391.

Beneš, M., Kimura, M., Yazaki, S., 2009, Second order numericalscheme for motion of polygonal curves with constantarea speed, Interfaces and Free Boundaries, 11, 515-536.

Ishiwata, T., 2008, Motion of non-convex polygons by crystallinecurvature and almost convexity phenom- ena, JapanJ. Indust. Appl. Math., 25, 233-253.

Ishiwata, T., Yazaki, S., 2007, Towards modelling the formationof negative ice crystals or vapor figures, RIMSKôkyûroku, 1542, 1-11.

Ishiwata, T., Yazaki, S., 2008, Interface motion of a negativecrystal and its analysis, RIMS Kôkyûroku,1588, 23-29.

Ishiwata, T., Yazaki, S., 2017 Convexity phenomena arising inan area-preserving crystalline curvature flow — Nakaya’sobservation and its mathematical justification,Submitted.Nayaka, U., 1956, Properties of single crystals of ice, revealedby internal melting, SIPRE (Snow, Ice and PermafrostReseach Establishment) Research Paper, 13.

Taylor, J. E., 1991, Constructions and conjectures in crystallinenondifferential geometry, Proceedings of the Conferenceon Differential Geometry, Rio de Janeiro, PitmanMonographs Surveys Pure Appl. Math., 52, 321-336.

Ushijima, T. K., Yazaki, S., 2004, Convergence of a crystallineapproximation for an area-preserving motion, Journalof Computational and Applied Mathematics, 166, 427-452.

Yazaki, S., 2002, On an area-preserving crystalline motion,Calc. Var., 14, 85-105.

Yazaki, S., 2007, Asymptotic behavior of solutions to an areapreservingmotion by crystalline curvature, Kybernetika,43, 903-912.

Yazaki, S., 2008, An area-preserving crystalline curvature flowequation, Topics in mathematical mod- elling, Part 4,Jindrich Necˇas center for mathemat- ical modeling lecturenotes eds M. Beneš and E. Feireisl, 4, matfyzpress,169-215.