Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations

Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations

Grzegorz Gurgul1, Maciej Woźniak1, Marcin Łoś1, Danuta Szeliga2, Maciej Paszyński1

1Department of Computer Science AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.

2Department of Applied Computer Science and Modeling, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.

DOI:

https://doi.org/10.7494/cmms.2017.1.0568

Abstract:

This paper describes multi-thread parallel open source JAVA implementation of an alternating directions isogeometric L2 projections solver. The solver enables for fast numerical simulations of time dependent problems. To apply our solver, the time-dependent problem must be discretized using isogeometric finite element method with B-spline basis functions in spatial domain. The problem is solved using explicit method with respect to time. The application of the explicit method with B-spline based spatial discretization results in a sequence of isogeometric L2 projections that can be solved using our fast solver. The computational cost of solution of either 2D or 3D problem is linear O(N) in every time step. This cost is lower than the cost of traditional multi-frontal solvers, delivering O(N1.5) computational cost for 2D problems and O(N2) computational cost for 3D problems. This cost is also lower from any iterative solver, delivering O(Nk) computational cost, where k is the number of iterations, which depends on the particular iterative solver algorithm. Our algorithm is used for numerical solution of 3D elasticity problem.

Cite as:

Gurgul, G., Woźniak, M., Łoś, M., Szeliga, D., Paszyński, M. (2017). Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations. Computer Methods in Materials Science, 17(1), 1 – 11. https://doi.org/10.7494/cmms.2017.1.0568

Article (PDF):

Keywords:

Alternating directions solver, Isogeometric L2 projections, Material science eling

References:

Alotaibi, M, Calo, V. M., Efendiev, Y., Galvis, J., Ghommem,M., 2015, Global-Local Nonlinear Model Reduction forFlows in Heterogeneous Porous Media, ComputerMethods in Applied Mechanics and Engineering, 292,122-137.

Birkhoff, G, Varga, R.S., Young, D., 1962, Alternating directionimplicit methods, Advanced Computing, 3,189-273.

Collier, N, Pardo, D., Dalcin, L., Paszynski, M., Calo, V. M.,2015, The cost of continuity: a study of the performanceof isogeometric finite elements using direct solvers,Computer Methods in Applied Mechanics and Engineering,213-216, 353-361.

Gao, L., Calo, V. M., 2014, Fast Isogeometric Solvers for ExplicitDynamics. Computer Methods in Applied Mechanicsand Engineering, 1, 19-41.

Gao, L., Calo, V. M., 2015, Preconditioners based on the alternating-direction-implicit algorithm for the 2D steadystatediffusion equation with orthotropic heterogenouscoefficients. Journal of Computational and AppliedMathematics, 273(1), 274-295.

Douglas, J., Rachford, H., 1956, On the numerical solution ofheat conduction problems in two and three space variables.Transactions of American Mathematical Society82, 421-439.

Duff, I. S. Reid, J. K., 1983, The multifrontal solution of indefinitesparse symmetric linear. ACM Transactions onMathematical Software 9(3), 302–325.

Duff, I. S. Reid, J. K., 1984, The multifrontal solution of unsymmetricsets of linear equations. Journal on Scientificand Statistical Computing 5, 633–641.

Geng , P., Oden, T. J. van de Geijn, R. A., 2006, A parallelmultifrontal algorithm and its implementation. ComputerMethods in Applied Mechanics and Engineering 149,289–301.

Kuźnik, K., Paszyński, M., Calo, V. M., 2013, Grammar-BasedMulti-Frontal Solver for One Dimensional IsogeometricAnalysis with Multiple Right-Hand-Sides. ProcediaComputer Science, 18, 1574-1583.

Łoś, M., Woźniak, M., Paszyński, M., Dalcin, L., Calo, V. M.,2015, Dynamics with Matrices Possessing KroneckerProduct Structure. Procedia Computer Science, 51, 286-295.

Paszyński, M., 2016, Fast Solvers for Mesh Based Computations,Taylor & Francis, CRC Press., New York.

Wachspress, E.L., Habetler, G., 1960, An alternating-directionimplicititeration technique. Journal of Society of Industrialand Applied Mathematics 8, 403-423.

Saad, Y, 2003, Iterative methods for sparse linear systems,SIAM.