A parallelized model for coupled phase field and crystal plasticity simulation

A parallelized model for coupled phase field and crystal plasticity simulation

Mingxuan Lin, Ulrich Prahl

Steel Institute, RWTH Aachen University, Germany.

DOI:

https://doi.org/10.7494/cmms.2016.3.0584

Abstract:

The predictive simulation of materials with strong interaction between microstructural evolution and mechanical deformation requires the coupling of two or more multi-physics models. The coupling between phase-field method and various mechanical models have drawn growing interests. Here, we propose a coupled multi-phase-field and crystal plasticity model that respects the anisotropic mechanical behavior of crystalline materials. The difference of computational complexity and solver requirements between these models presents a challenging problem for coupling and parallelization. The proposed method enables parallel computation of both models using different numerical solvers with different time discretization.  Finally two demonstrative examples are given with an application to the austenite-ferrite transformation in iron-based alloys.

Cite as:

Lin, M., Prahl, U. (2016). A parallelized model for coupled phase field and crystal plasticity simulation. Computer Methods in Materials Science, 16(3), 156 – 162. https://doi.org/10.7494/cmms.2016.3.0584

Article (PDF):

Keywords:

Phase field, Crystal plasticity, OpenMP, Parallelization

References:

Arif, T. T. Qin, R. S., 2013, A phase-field model for bainitictransformation, Computational Materials Science, 77,230-235.

Arif, T. T. Qin, R. S., 2014, A Phase-Field Model for the Formationof Martensite and Bainite, Advanced MaterialsResearch, 922, 31-36.

Bhadeshia, H. K. D. H, 2001, Worked examples in the geometryof crystals, Institute of Metals, Brookfield and VT andUSA, 2nd edition.Cahn, J. W. Hilliard, J. E., 1958, Free Energy of a NonuniformSystem. I. Interfacial Free Energy, The Journal ofChemical Physics, 28(2), 258.

Diehl, M., 2010, A spectral method using fast Fourier transformto solve elastoviscoplastic mechanical boundary valueproblems, Master’s thesis, Technische UniversitaetMuenchen, Munich.

Eiken, J., Böttger, B., Steinbach, I., 2006, Multiphase-fieldapproach for multicomponent alloys with extrapolationscheme for numerical application, Physical Review E,73(6).

Eisenlohr, P., Diehl, M., Lebensohn, R. A., Roters, F., 2013, Aspectral method solution to crystal elasto-viscoplasticity atfinite strains, International Journal of Plasticity, 46, 37-53.

Frigo, M. Johnson, S. G., 2005, The Design and Implementationof FFTW3, Proceedings of the IEEE, 93(2), 216-231.

Kundin, J., Pogorelov, E., Emmerich, H., 2015, Numerical investigationof the interaction between the martensitic transformationfront and the plastic strain in austenite, Journalof the Mechanics and Physics of Solids, 76, 65-83.

Kundin, J., Raabe, D., Emmerich, H., 2011, A phase-field modelfor incoherent martensitic transformations includingplastic accommodation processes in the austenite, Journalof the Mechanics and Physics of Solids, 59(10),2082-2102.

Kundu, S., Hase, K., Bhadeshia, H., 2007, Crystallographictexture of stress-affected bainite, Proceedings of theRoyal Society A, Mathematical, Physical and EngineeringSciences, 463(2085), 2309-2328.

Ma, A., Roters, F., Raabe, D., 2006, On the consideration ofinteractions between dislocations and grain boundariesin crystal plasticity finite element modeling – Theory,experiments, and simulations, Acta Materialia, 54(8),2181-2194.

Prakash, A. Lebensohn, R. A., 2009, Simulation of micromechanicalbehavior of polycrystals, finite elements versusfast Fourier transforms, Modelling and Simulation inMaterials Science and Engineering, 17(6), 064010.

Qin, R. S. Bhadeshia, H., 2009, Phase-field model study of theeffect of interface anisotropy on the crystal morphologicalevolution of cubic metals, Acta Materialia, 57(7),2210-2216.

Roters, F., Eisenlohr, P., Bieler, T. R., Raabe, D., 2011, CrystalPlasticity Finite Element Methods, In Materials Scienceand Engineering, Wiley, Somerset.

Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D. D., Bieler,T. R., Raabe, D., 2010, Overview of constitutive laws,kinematics, homogenization and multiscale methods incrystal plasticity finite-element modeling, Theory, experiments,applications, Acta Materialia, 58(4), 1152-1211.

Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D. D., Diehl, M.,Raabe, D., 2012, DAMASK, the Düsseldorf AdvancedMAterial Simulation Kit for studying crystal plasticityusing an FE based or a spectral numerical solver, ProcediaIUTAM, 3, 3-10.

Shanthraj, P., Eisenlohr, P., Diehl, M., Roters, F., 2015, Numericallyrobust spectral methods for crystal plasticity simulationsof heterogeneous materials, International Journalof Plasticity, 66, 31-45.

Steinbach, I., 2009, Phase-field models in materials science,Modelling and Simulation in Materials Science and Engineering,17(7), 073001.

Steinbach, I. Apel, M., 2006, Multi phase field model for solidstate transformation with elastic strain, Physica D, NonlinearPhenomena, 217(2), 153-160.

Steinbach, I. Pezzolla, F., 1999, A generalized field method formultiphase transformations using interface fields, PhysicaD, Nonlinear Phenomena, 134(4), 385-393.

Tiaden, J., Nestler, B., Diepers, H. J., Steinbach, I., 1998, Themultiphase-field model with an integrated concept formodelling solute diffusion, Physica D, Nonlinear Phenomena,115(1-2), 73-86.