Evaluation of efficient computational work division in parallel Monte Carlo grain growth algorithm
AGH University of Science and Technology, 30 Mickiewicza Av., Krakow, 30-059 Poland.
DOI:
https://doi.org/10.7494/cmms.2016.3.0579
Abstract:
Implementation of parallel version of the Monte Carlo (MC) grain growth algorithm is the subject of the present paper. First, modifications of the classical MC grain growth algorithm required for the parallel execution are presented. Then, schemes for the MC space division between subsequent computational threads/nodes are discussed. Finally, implementation details of different parallelization approaches based on OpenMP and MPI are presented and compared.
Cite as:
Sitko, M., Madej, Ł. (2016). Evaluation of efficient computational work division in parallel Monte Carlo grain growth algorithm.. Computer Methods in Materials Science, 16(3), 113 – 120. https://doi.org/10.7494/cmms.2016.3.0579
Article (PDF):
Keywords:
Monte Carlo, OpenMP, MPI, Parallelization, Grain growth
References:
Dong, D., Chen, F., Cui, Z., 2016, Static recrystallization behaviorof SA508-III steel during hot deformation, Journal ofIron and Steel Research, 23, 466-474.
Goins, P.E., Holm, E.A., 2016, The material point Monte Carlomodel: a discrete, off-lattice method for microstructuralevolution simulations, Computational Materials Science,124, 411-419.
Humphreys, M.J., Hatherly, M., 2004, Recrystallization andrelated annealing phenomena, second ed. Elsevier, Oxford.
Ivasishin, O.M., Shevchenko, S.V., Vasiliev, N.L., Semiatin,S.L., 2006, A 3-D Monte Carlo (Potts) model for recrystallizationand grain growth in polycrystalline materials,Materials Science and Engineering A, 422, 216-232.
Madej, L., Rauch, L., Perzynski, K., Cybulka, P., 2011, DigitalMaterial Representation as an efficient tool for strain inhomogeneitiesanalysis at the micro scale level, Archivesof Civil and Mechanical Engineering, 11, 661-679.
Mason, J.K., 2015, Grain boundary energy and curvature inMonte Carlo and cellular automata simulations of grainboundary motion, Acta Materialia, 94, 162-171.
Mason, J.K., Lind, J., Lia, S.F., Reed, B.W., Kumar, M., 2015,Kinetics and anisotropy of the Monte Carlo model ofgrain growth, Acta Materialia, 82, 155-166.
Rollett, A.D., Manohar, P., 2004, The Monte Carlo Method, inContinuum Scale Simulation of Engineering Materials:Fundamentals – Microstructures – Process Applications,eds Raabe, D., Roters, F., Barlat, F., Chen, L.-Q., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi:10.1002/3527603786.ch4, 77-114.
Scholtes, B., Boulais-Sinou, R., Settefrati, A., D. Muñoz, D.P.,Poitrault, I., Montouchet, A., Bozzol, N., Bernacki, M.,2016, 3D level set modeling of static recrystallizationconsidering stored energy fields, Computational MaterialsScience, 122, 57-71.
Sieradzki, L., Madej, L., 2013, A perceptive comparison of thecellular automata and Monte Carlo techniques in applicationto static recrystallization modeling in polycrystallinematerials, Computational Material Science, 67, 156-173.
Su, J., Sanjari, M., Kabir, A.S.H., Jonas, J.J., Yue, S., 2016,Static recrystallization behaviour of magnesium AZ31alloy subjected to high speed rolling, Materials Science& Engineering A, 662, 412-425.
Sun, L., Muszka, K., Wynne, B.P., Palmiere, E.J., 2013, On theinteractions between strain path reversal and dynamicrecrystallisation in 316L stainless steel studied by hottorsion, Materials Science and Engineering A, 568, 160-170.
Williamson, A., Delplanque, J.-P., 2016, Investigation of dynamicabnormal grain growth using the Monte CarloPotts method, Computational Materials Science, 124,114-129.