Towards processing of multilayered metallic materials – constrained compression testing
Szymon Bajda, Michal Krzyzanowski, Marcin Kwiecień, Janusz Majta, Łukasz Lisiecki, Jakub Sroka
AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30, 30-059 Krakow, Poland.
DOI:
https://doi.org/10.7494/cmms.2016.2.0563
Abstract:
The complex analysis of the interface behaviour has been performed during constrained compression testing of 316L steel plates as a way towards processing of the multilayered metallic materials. The approach is based on a combination of experiments under appropriate operating conditions and computer modelling based on finite element (FE) methodology for interpretation of the test results. Multilayered metallic structure was successfully obtained using the applied constrained compression testing technique. The specially designed die and compression specimens allowed for joining of the steel plates together even at room temperatures. The performed numerical analysis using the ABAQUS/Standard FE software revealed the strain and stress localisation areas within the multilayered structure among other features that are described in the paper. The results are in agreement with experimental observations.
Cite as:
Bajda, S., Krzyzanowski, M., Kwiecień, M., Majta, J., Lisiecki, Ł., Sroka, J. (2016). Towards processing of multilayered metallic materials – constrained compression testing. Computer Methods in Materials Science, 16(2), 76 – 86. https://doi.org/10.7494/cmms.2016.2.0563
Article (PDF):
Keywords:
Multilayered metallic materials, Constrained compression test, Numerical modelling, 316L stainless steel, Stress and strain distribution
References:
Bajda, S., Krzyzanowski, M., Muszka, K., Rainforth, W. M.,2015, Numerical analysis of highly reactive interfaces inprocessing of nanocrystallised multilayered metallicmaterials by using duplex technique, Surf. CoatingsTechnol., 277, 170-180.
Bay, N., 1983, Mechanisms Producing Metallic Bonds in ColdWelding, Weld. Reseach Suppl., 62, 137-142.
Bay, N., 1986, Cold welding: Part 1 Characteristics, bondingmechanisms, bond strength, Met. Constr., 18(8,10), 369-372.
Bay, N., Clemensen, C., Juelstorp, O., Wanheim, T., 1985, BondStrength in Cold Roll Bonding, CIRP Ann. – Manuf.Technol., 34(1), 221-224.
Chen, X. H., Lu, J., Lu, L., Lu, K., 2005, Tensile properties of ananocrystalline 316L austenitic stainless steel, Scr.Mater., 52(10), 1039-1044.
Conrad, H., Rice, L., 1970, The cohesion of previously fracturedFcc metals in ultrahigh vacuum, Metall. Trans., 1(11),3019-3029.
Eskandari, M., Zarei-Hanzaki, A., Pilehva, F., Abedi, H. R.,Fatemi-Varzaneh, S. M., Khalesian, A. R., 2013,Ductility improvement in AZ31 magnesium alloy usingconstrained compression testing technique, Mater. Sci.Eng. A, 576, 74-81.
Ghafari-Gousheh, S., Hossein Nedjad, S., Khalil-Allafi, J., 2015,Tensile properties and interfacial bonding of multilayered,high-purity titanium strips fabricated by ARBprocess, J. Mech. Behav. Biomed. Mater., 51, 147-153.
Gleiter, H., 1989, Nanocrystalline materials, Prog. Mater. Sci.,33(4), 223-315.
Gupta, R. K., Birbilis, N., 2015, The influence ofnanocrystalline structure and processing route oncorrosion of stainless steel: A review, Corros. Sci., 92,1-15.
Jamaati, R., Toroghinejad, M. R., 2011, The role of surfacepreparation parameters on cold roll bonding ofaluminum strips, J. Mater. Eng. Perform., 20(2), 191-197.
Li, L., Nagai, K., Yin, F., 2008, Progress in cold roll bonding ofmetals, Sci. Technol. Adv. Mater., 9(2), 1-11.
Liu, L., Li, Y., Wang, F., 2010, Electrochemical CorrosionBehavior of Nanocrystalline Materials – a Review, J.Mater. Sci. Technol., 26(1), 1-14.
Lu, K., Lu, J., 1999, Surface nanocrystallization (SNC) ofmetallic materials-presentation of the concept behind anew approach, J. Mater. Sci. Technol., 15(3), 193-197.
Manesh, H. D., Shahabi, H. S., 2009, Effective parameters onbonding strength of roll bonded Al/St/Al multilayerstrips, J. Alloys Compd., 476(1-2), 292-299.
Milner, D. R., Rowe, G. W., 1962, Fundamentals of Solid-PhaseWelding, Metall. Rev., 7(1), 433-480.
Mori, K. I., Bay, N., Fratini, L., Micari, F., Tekkaya, A. E.,2013, Joining by plastic deformation, CIRP Ann. -Manuf. Technol., 62(2), 673-694.
Muszka, K., Majta, J., Hodgson, P. D., 2007, Study of the grainsize effect on the deformation behavior of microalloyedsteels, In Proceedings of Materials Science AndTechnology, Detroit MI: Association for Iron and SteelIdustry 6, 493-504.
Pawlicki, M., Drenger, T., Pieszak, M., Borowski, J., 2015, Coldupset forging joining of ultra-fine-grained aluminiumand copper, J. Mater. Process. Technol., 223, 193-202.
Petit, J., Waltz, L., Montay, G., Retraint, D., Roos, A., François,M., 2012, Multilayer modelling of stainless steel with ananocrystallised superficial layer, Mater. Sci. Eng. A,536, 124-128.
Quadir, M. Z., Wolz, A., Hoffman, M., Ferry, M., 2008, Influence of processing parameters on the bondtoughness of roll-bonded aluminium strip, Scr. Mater.,58(11), 959-962.
Ralston, K. D., Birbilis, N., 2010, Effect of grain size oncorrosion, Corrosion, 66(7), 1-4.
Roland, T., Retraint, D., Lu, K., Lu, J., 2005, Generation ofnanostructures on 316L stainless steel and its effect onmechanical behavior, Mater. Sci. Forum, 490-491, 625-630.
Roland, T., Retraint, D., Lu, K., Lu, J., 2006, Fatigue lifeimprovement through surface nanostructuring ofstainless steel by means of surface mechanical attritiontreatment, Scr. Mater., 54(11), 1949-1954.
Roland, T., Retraint, D., Lu, K., Lu, J., 2007, Enhancedmechanical behavior of a nanocrystallised stainless steeland its thermal stability, Mater. Sci. Eng. A, 445-446,281-288.
Roland, T., Ya, M., Retraint, D., Lu, K., Lu, J., 2009, A NewMultilayered Nanostructured Composite MaterialProduced by Assembling SMA-Treated Thin Plates, J.Mater. Sci. Technol., 20(Supl.), 55-58.
Sherwood, W. C., Milner, D. R., 1969, The Effect of VacuumMachining on the Cold Welding of Some Metals, J. Inst.Met., 97, 1-5.
Waltz, L., Retraint, D., Roos, A., Olier, P., 2009a, Combinationof surface nanocrystallization and co-rolling: Creatingmultilayer nanocrystalline composites, Scr. Mater.,60(1), 21-24.
Waltz, L., Retraint, D., Roos, A., Olier, P., Lu, J., 2009b, HighStrength Nanocrystallized Multilayered StructureObtained by SMAT and Co-Rolling, Mater. Sci. Forum,614, 249-254.
Wang, X. Y., Li, D. Y., 2002, Mechanical and electrochemicalbehavior of nanocrystalline surface of 304 stainlesssteel, Electrochim. Acta, 47(24), 3939-3947.
Wang, X. Y., Li, D. Y., 2003, Mechanical, electrochemical andtribological properties of nano-crystalline surface of 304stainless steel, Wear, 255(7-12), 836-845.
Yanagimoto, J., Oya, T., Kawanishi, S., Tiesler, N., Koseki, T.,2010, Enhancement of bending formability of brittlesheet metal in multilayer metallic sheets, CIRP Ann. -Manuf. Technol., 59(1), 287-290.